Physics 101: Lecture 22 Waves

Waves Overview

- Types of waves
- Speed or a wave
- Harmonic waves
- Superposition and Interference
- Standing waves

Bottom line for today: Lots of definitions to remember, and some algebra/trig to do, but material is not difficult

Types of Waves

- Transverse: The medium oscillates perpendicular to the direction the wave is moving.
 - →Water (more or less)
 - →Slinky demo

- Longitudinal: The medium oscillates in the same direction as the wave is moving
 - **→**Sound
 - →Slinky demo

Harmonic Waves

$$y(x,t) = A \cos(\omega t - kx)$$
 or $A \cos(kx - \omega t)$

Wavelength: The distance λ between identical points on the wave. Amplitude: The maximum displacement A of a point on the wave.

Angular Frequency ω : $\omega = 2 \pi f = 2 \pi / T$

f is simply called the Frequency

Wave Number k: $k = 2 \pi / \lambda$

Remember: $f = v / \lambda$ or $f \lambda = v$

Period and Velocity

• Period: The time *T* for a point on the wave to undergo one complete oscillation.

• Speed: The wave moves one wavelength λ in one period T so its speed is $v = \lambda / T$.

$$\nu = \frac{\lambda}{T} = \lambda f$$

Harmonic Waves Exercise

Plot wave at a fixed position as time passes

$$y(x,t) = A \cos(\omega t - kx)$$

Label axis and tic marks if the graph shows a snapshot of the wave

$$y(x,t) = 2 \cos(4t-2x)$$
 at $x=0$. $T = 2 \pi / \omega$

 $= 2 \pi / 4$ $= \pi / 2$

