Physics 101: Lecture 23 Sound

Standing Waves Fixed Endpoints

Fundamental, or first harmonic
$-\lambda_{\mathrm{n}}=2 \mathrm{~L} / \mathrm{n}$

- $\mathrm{f}_{\mathrm{n}}=\mathrm{nv} /(2 \mathrm{~L})$

Standiing Waves Example

$L=\lambda / 2$

A guitar's E-string has a length of 65 cm and is stretched to a tension of 82 N . If it vibrates with a fundamental frequency of 329.63 Hz , what is the mass of the string?

$$
\begin{aligned}
& v=\sqrt{\frac{T}{\mu}} \quad f=v / \lambda \text { tells us } v \text { if we know } f \text { (frequency) and } \lambda(\text { wa } \\
& \qquad \begin{aligned}
v & =\lambda \mathrm{f} \\
& =2(0.65 \mathrm{~m})\left(329.63 \mathrm{~s}^{-1}\right) \\
& =428.5 \mathrm{~m} / \mathrm{s}
\end{aligned} \quad \begin{aligned}
& \mathrm{v}^{2}=\mathrm{T} / \mu \\
& \mu=\mathrm{T} / \mathrm{v}^{2} \\
& \mathrm{~m}=\mathrm{T} \mathrm{~L} / \mathrm{v}^{2} \\
&=82(0.65) /(428.5)^{2} \\
&=2.9 \times 10^{-4} \mathrm{~kg}
\end{aligned}
\end{aligned}
$$

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere) NOTE: A pressure node corresponds to a displacement antinode and A pressure antinode corresponds to a displacement node

Open at both ends:
Pressure Node at end

$$
\lambda=2 \mathrm{~L} / \mathrm{n} \quad \mathrm{n}=1,2,3 . .
$$

Open at one end:
Pressure AntiNode at closed end : $\lambda=4 \mathrm{~L} / \mathrm{n}$

Organ Pipe Standing Wave Example

A 0.9 m organ pipe (open at both ends) is measured to have its second harmonic at a frequency of 382 Hz . What is the speed of sound in the pipe?

Pressure Node at each end.

$$
\begin{aligned}
& \lambda=2 \mathrm{~L} / \mathrm{n} \mathrm{n}=1,2,3 . . \\
& \begin{aligned}
\lambda & =\mathrm{L} \text { for second harmonic }(\mathrm{n}=2) \\
\mathrm{v} & =\mathrm{f} \lambda=\left(382 \mathrm{~s}^{-1}\right)(0.9 \mathrm{~m}) \\
& =343 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

Note: fundamental, $n=1$, has a wavelength of $\lambda=2 \mathrm{~L}$

Speed of Sound

- Recall for pulse on string: $\mathrm{v}=\operatorname{sqrt}(\mathrm{T} / \mu)$
-For fluids:
$\mathrm{v}=\operatorname{sqrt}(\mathrm{B} / \rho)$
$B=$ bulk modulus

Medium	Speed (m/s)
Air	343
Helium	972
Water	1500
Steel	5600

Intensity and Loudness

- Intensity is the power per unit area of a sound.
$\Rightarrow \mathrm{I}=$ Power / A
\Rightarrow Units: $(\mathrm{J} / \mathrm{s}) / \mathrm{m}^{2}\left(=\right.$ Watts $\left./ \mathrm{m}^{2}\right)$
- Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale.
\Rightarrow Loudness perception is logarithmic
\Rightarrow Threshold for hearing $\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$ (corresponds to 0 dB)
\Rightarrow Threshold for pain $\mathrm{I}=10^{0} \mathrm{~W} / \mathrm{m}^{2}=1 \mathrm{~W} / \mathrm{m}^{2}$ (corresponds to 120 dB)
This is a huge range of 12 orders of magnitude (12 powers of 10)
$\Rightarrow \beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$
$\Rightarrow \beta_{2}-\beta_{1}=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)$

$\log _{10}$ Review

- $\log _{10}(1)=0$
- $\log _{10}(10)=1$

$$
\begin{aligned}
& \beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right) \\
& \beta_{2}-\beta_{1}=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I}_{2} / \mathrm{I}_{1}\right)
\end{aligned}
$$

- $\log _{10}(100)=2$
- $\log _{10}(1,000)=3$
- $\log _{10}(10,000,000,000)=10$
- $\log _{10}(2)=0.3$
- $\log (a b)=\log (a)+\log (b)$
- $\log (a / b)=\log (a)-\log (b)$
- $\log _{10}(100)=\log _{10}(10)+\log _{10}(10)=2$

Decibels Clicker Q

- If 1 person can shout with loudness 50 dB. How loud will it be when 100 people shout? Assume $\mathrm{I}_{100}=100 \mathrm{I}_{1}$

1) 52 dB 2) 70 dB 3) 150 dB

$$
\begin{aligned}
& \begin{aligned}
\beta_{100}-\beta_{1} & =(10 \mathrm{~dB}) \log _{10}\left(I_{100} / I_{1}\right) \\
& =(10 \mathrm{~dB}) \log _{10}\left(100 I_{1} / I_{1}\right)
\end{aligned} \\
& \begin{aligned}
\beta_{100} & =\beta_{1}+(10 \mathrm{~dB}) \log _{10}(100) \\
& =50 \mathrm{~dB}+(10 \mathrm{~dB})(2)
\end{aligned} \\
& \beta_{100}=50 \mathrm{~dB}+20 \mathrm{~dB}=70 \mathrm{~dB} \\
& \text { What if you had } 2 \text { shouters? }
\end{aligned}
$$

Interference and Superposition

Constructive interference
Destructive interference

Superposition \& Interference

- Consider two harmonic waves A and B meeting at $x=0$.
\Rightarrow Same amplitudes, but $\omega_{2}=1.15 \times \omega_{1}$.
- The displacement versus time for each is shown below:

What does $C(t)=A(t)+B(t)$ look like??

Superposition \& Interference

- Consider two harmonic waves A and B meeting at $x=0$.
\Rightarrow Same amplitudes, but $\omega_{2}=1.15 \times \omega_{1}$.
- The displacement versus time for each is shown below:

Beats

- Can we predict this pattern mathematically?
\Rightarrow Of course!
- Just add two cosines and remember the identity:

$$
\begin{gathered}
A \cos \left(\omega_{1} t\right)+A \cos \left(\omega_{2} t\right)=2 A \cos \left(\omega_{L} t\right) \cos \left(\omega_{H} t\right) \\
\text { where } \omega_{L}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right) \text { and } \omega_{H}=\frac{1}{2}\left(\omega_{1}+\omega_{2}\right)
\end{gathered}
$$

Summary

- Speed of sound $v=\operatorname{sqrt}(B / \rho)$
- Intensity $\beta=(10 \mathrm{~dB}) \log _{10}\left(\mathrm{I} / \mathrm{I}_{0}\right)$
- Standing Waves
- Beats $\quad \omega_{L}=\frac{1}{2}\left(\omega_{1}-\omega_{2}\right)$

