Physics 101: Lecture 23 Sound

Standing Waves Fixed Endpoints

A guitar's E-string has a length of 65 cm and is stretched to a tension of 82N. If it vibrates with a fundamental frequency of 329.63 Hz, what is the mass of the string?

 $f = v / \lambda$ tells us v if we know f (frequency) and λ (wavelength)

 $v = \lambda f$ = 2 (0.65 m) (329.63 s⁻¹) = 428.5 m/s

 $\nu =$

$$v^{2} = T / \mu$$

$$\mu = T / v^{2}$$

$$m = T L / v^{2}$$

$$= 82 (0.65) / (428.5)^{2}$$

$$= 2.9 \times 10^{-4} \text{ kg}$$

Standing Waves in Pipes

A pressure node is where pressure is normal (open to atmosphere) NOTE: A pressure node corresponds to a displacement antinode and A pressure antinode corresponds to a displacement node

Open at both ends: Pressure Node at end $\lambda = 2 L / n n=1,2,3..$

Open at one end:

Pressure AntiNode at closed end : $\lambda = 4L/n$

Organ Pipe Standing Wave Example

A 0.9 m organ pipe (open at both ends) is measured to have its second harmonic at a frequency of 382 Hz. What is the speed of sound in the pipe?

Note: fundamental, n=1, has a wavelength of λ = 2 L

Pressure Node at each end.

 $\lambda = 2 L / n n = 1, 2, 3..$

 $\lambda = L$ for second harmonic (n=2) $v = f \lambda = (382 \text{ s}^{-1}) (0.9 \text{ m})$ = 343 m/s

Speed of Sound

Recall for pulse on string: v = sqrt(T/μ)
For fluids: v = sqrt(B/ρ)

B = bulk modulus

Medium	Speed (m/s)
Air	343
Helium	972
Water	1500
Steel	5600

Intensity and Loudness
Intensity is the power per unit area of a sound.
I = Power / A

Units: $(J/s)/m^2$ (= Watts/m²)

• Loudness (Decibels): We hear "loudness" not intensity, and loudness is a logarithmic scale. Loudness perception is logarithmic Threshold for hearing $I_0 = 10^{-12} \text{ W/m}^2$ (corresponds to 0 dB) Threshold for pain I = 10° W/m² = 1 W/m² (corresponds to 120 dB) This is a huge range of 12 orders of magnitude (12 powers of 10) $\Rightarrow \beta = (10 \text{ dB}) \log_{10} (\text{ I / I}_0)$ $\Rightarrow \beta_2 - \beta_1 = (10 \text{ dB}) \log_{10}(I_2/I_1)$

Log₁₀ Review

- $\bullet \log_{10}(1) = 0$
- $\log_{10}(10) = 1$

 $\beta = (10 \text{ dB}) \log_{10} (\text{ I / I}_0)$ $\beta_2 - \beta_1 = (10 \text{ dB}) \log_{10}(\text{I}_2/\text{I}_1)$

- $\log_{10}(100) = 2$
- $\log_{10}(1,000) = 3$
- $\log_{10}(10,000,000,000) = 10$
- $\log_{10}(2) = 0.3$
- $\bullet \log(ab) = \log(a) + \log(b)$
- $\log(a/b) = \log(a) \log(b)$
- $\log_{10}(100) = \log_{10}(10) + \log_{10}(10) = 2$

Decibels Clicker Q

• If 1 person can shout with loudness 50 dB. How loud will it be when 100 people shout? Assume $I_{100} = 100I_1$

1) 52 dB

2) 70 dB

3) 150 dB

 $\beta_{100} - \beta_1 = (10 \text{ dB}) \log_{10}(I_{100}/I_1)$ = (10 dB) $\log_{10}(100I_1/I_1)$ $\beta_{100} = \beta_1 + (10 \text{ dB}) \log_{10}(100)$ = 50 dB + (10 dB) (2) $\beta_{100} = 50 \text{ dB} + 20 \text{ dB} = 70 \text{ dB}$ What if you had 2 shouters?

Destructive interference

Superposition & Interference

• Consider two harmonic waves *A* and *B* meeting at x=0.

Same amplitudes, but $\omega_2 = 1.15 \times \omega_1$.

• The displacement versus time for each is shown below:

What does C(t) = A(t) + B(t) look like??

Superposition & Interference

• Consider two harmonic waves *A* and *B* meeting at x=0.

Same amplitudes, but $\omega_2 = 1.15 \times \omega_1$.

• The displacement versus time for each is shown below:

Beats

- Can we predict this pattern mathematically?
 Of course!
- Just add two cosines and remember the identity:
- $A\cos(\omega_1 t) + A\cos(\omega_2 t) = 2A\cos(\omega_L t)\cos(\omega_H t)$ where $\omega_L = \frac{1}{2}(\omega_1 - \omega_2)$ and $\omega_H = \frac{1}{2}(\omega_1 + \omega_2)$

• Speed of sound $v = sqrt(B/\rho)$

• Intensity $\beta = (10 \text{ dB}) \log_{10} (\text{ I / I}_0)$

• Standing Waves

• Beats
$$\omega_L = \frac{1}{2}(\omega_1 - \omega_2)$$