Physics 101: Lecture 25 Ideal Gas Law and Kinetic Theory

Molecular Picture of Gas

- Gas is made up of many individual molecules
- Number density is number of molecules/volume:
$\Rightarrow \mathrm{N} / \mathrm{V}=\rho / \mathrm{m}$
$\Rightarrow \rho$ is the mass density
$\Rightarrow \mathrm{m}$ is the mass for one molecule
$1 \mathrm{u}=1.66^{\star} 10^{-27} \mathrm{~kg}=1 / 12$ of a mass of C^{12}
- Number of moles: $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$
$\Rightarrow \mathrm{N}_{\mathrm{A}}=$ Avogadro's Number $=6.022 \times 10^{23} \mathrm{~mole}^{-1}$
- Mass of 1 mole of "stuff" in grams = molecular mass in u \Rightarrow e.g., 1 mole of N_{2} has mass of $2 \times 14=28$ grams

The Ideal Gas Law

- $\mathrm{P} V=\mathrm{N} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ or $\mathrm{P}=(\mathrm{N} / \mathrm{V}) \mathrm{k}_{\mathrm{B}} \mathrm{T}$
$\Rightarrow \mathrm{P}=$ pressure in $\mathrm{N} / \mathrm{m}^{2}$ (or Pascals)
$\Rightarrow \mathrm{V}=$ volume in m^{3}
$\Rightarrow \mathrm{N}=$ number of molecules
$\Rightarrow \mathrm{T}=$ absolute temperature in K
$\Rightarrow \mathrm{k}_{\mathrm{B}}=$ Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
\Rightarrow Note: P V has units of N-m or J (energy!)
- $\mathrm{P} V=\mathrm{n} \mathrm{R} \mathrm{T}$ (get this by multiplying top eqn by $\mathrm{N}_{\mathrm{A}} / \mathrm{N}_{\mathrm{A}}$)
$\Rightarrow \mathrm{n}=$ number of moles
$\Rightarrow R=$ ideal gas constant $=N_{A} k_{B}=8.31 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$

Page 3

Ideal Gas Law: Demos $\mathrm{pV}=\mathrm{nRT}$

- When T is constant, PV is constant (Boyle's Law)
\Rightarrow Boyle's law demo (Done earlier)
- When P is constant, V is proportional to T
\Rightarrow Helium and oxygen in $\mathrm{LN}_{2} \quad$ (Balloon in LN_{2})
- When V is constant, P is proportional to T

Summary

- Gas is made up of molecules
- Ideal Gas Law PV = n R T
$\Rightarrow \mathrm{P}=$ pressure in $\mathrm{N} / \mathrm{m}^{2}$ (or Pascals)
$\Rightarrow \mathrm{V}=$ volume in m^{3}
$\Rightarrow \mathrm{n}=$ \# moles
$\Rightarrow \mathrm{R}=8.31 \mathrm{~J} /(\mathrm{K}$ mole $)$
$\Rightarrow \mathrm{T}=$ Temperature (K)
\Rightarrow Explosion! (Cannon DEMO)

