
Physics 101: Lecture 28 Thermodynamics

Heat Transfer: Radiation

• All things radiate electromagnetic energy

- \Rightarrow H_{emit} = Q/t = eA\sigma T⁴
 - » e = emissivity (between 0 and 1)
 - perfect "black body" has e=1
 - » T is temperature of object in Kelvin
 - » σ = Stefan-Boltzmann constant = 5.67 x 10⁻⁸ J/s-m²-K⁴
- ➡No "medium" required
- All things absorb energy from surroundings

 \Rightarrow H_{absorb} = eA σ T₀⁴

- » T_0 is temperature of surroundings in Kelvin
- » good emitters (e close to 1) are also good absorbers

Heat Transfer: Radiation

• All things radiate and absorb electromagnetic energy

 $H_{emit} = eA\sigma T^{4}$ Surroundings at T_{0} $H_{absorb} = eA\sigma T_{0}^{4}$ $H_{net} = H_{emit} - H_{absorb} = eA\sigma (T^{4} - T_{0}^{4})$ $if T > T_{0}, object cools down$

» if $T < T_0$, object heats up

Bridge Set from Last Wed

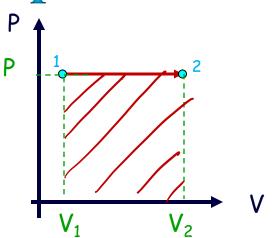
A volume of N_2 is compressed through three processes as shown. Which process has the greatest decrease in the average kinetic energy of the molecules?

Only process where T goes down is c to d and average KE depends only on Temp. 80

First Law of Thermodynamics = Energy Conservation

The change in internal energy of a system (ΔU) is equal to the heat flow into the system (Q) minus the work done *by* the system (W)

Bridge Set from Last Wed.


 $\Delta U = Q - W$

- A cylinder that has a piston contains one mole of H₂ and undergoes an expansion that doubles the initial volume of the gas. How much heat is transferred to or from the gas? (assume constant P)
- (1) Heat flows into gas by amount greater than W>
 - 2) Heat flows into gas by amount less than W
 - 3) Heat flows out of gas by amount greater than W
 - 4) Heat flows out of gas by amount le Heat flow and work done: Question 1 (N = 270)

First Law of Thermodynamics Isobaric Example

- 2 moles of monatomic ideal gas is taken from state 1 to state 2 at <u>constant pressure</u> p=1000 Pa, where $V_1 = 2m^3$ and $V_2 = 3m^3$ Find T_1 , T_2 , ΔU , W, Q. (R=8.31 J/k mole)
- 1. $PV_1 = nRT_1 \implies T_1 = PV_1/nR = 120K$
- 2. $PV_2 = nRT_2 \implies T_2 = PV_2/nR = 180K$
- 3. △U = (3/2) nR △T = 1500 J
 △U = (3/2) p △V = 1500 J (has to be the same)
- 4. W = p ∆V = 1000 J
- 5. $Q = \Delta U + W = 1500 + 1000 = 2500 J$

First Law of Thermodynamics Isochoric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at <u>constant volume</u> $V=2m^3$, where $T_1=120K$ and $T_2=180K$ Find Q.

1. Q = ∆U + W

2. ΔU = (3/2) nR ΔT = 1500 J

3. $W = P \Delta V = 0 J$

4. $Q = \Delta U + W = 1500 + 0 = 1500 J$

Comparing it to last slide where we had a constant pressure process (and same $T_1 \& T_2$): Less heat is required to raise T at const. volume than at const. pressure

First Law Questions

• Which part of cycle has largest magnitude change in internal energy, ΔU ?

 $2 \rightarrow 3$ (since $\Delta U = 3/2 (p_3 V_3 - p_2 V_2) = 3/2 \text{ nR } \Delta T$)

• Which part of cycle involves the most work done by system?

 $1 \rightarrow 2$ is most (positive), $3 \rightarrow 1$ is 0, $2 \rightarrow 3$ is negative. Net W is POSITIVE

• What is change in internal energy for full cycle?

△U = 0 for closed cycle (since both p & V [and T] are back where they started)
What is net heat into system for full cycle (positive or negative)?
△U = 0 ⇒ Q = W = area of triangle (>0)

• Constant Temp $\Delta U = 0$ (isothermal)

•Adiabatic Q=0

Reversible?

 Most "physics" processes are reversible: you could play movie backwards and still looks fine. (drop ball vs throw ball up)

• Exceptions:

- ➡Non-conservative forces (friction)
- →Heat Flow:
 - » Heat never flows spontaneously from cold to hot

Summary:

Ist Law of Thermodynamics: Energy Conservation

