Physics 101: Lecture 28 Thermodynamics

École Polytechnique	Glasgow school	Berlin school	Edinburgh school
	William Thomson (1824-1907)	Rudolf Clausius (1822-1888)	
Vienna school	Gibbsian school	Dresden school	Dutch school
$\frac{\text { Ludwig Boltzmann }}{(1844-1906)}$	$\frac{\text { Willard Gibbs }}{(1839-1903)}$	$\frac{\text { Gustav Zeuner }}{(1828-1907)}$	$\frac{\text { Johannes der Waals }}{(1837-1923)}$

Heat Transfer: Radiation

- All things radiate electromagnetic energy
$\Rightarrow H_{\text {emit }}=\mathrm{Q} / \mathrm{t}=\mathrm{eA} \sigma \mathrm{T}^{4}$
» $\mathrm{e}=$ emissivity (between 0 and 1)
- perfect "black body" has e=1

Surroundings at T_{0}

T Hot stove
» T is temperature of object in Kelvin
$» \sigma=$ Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{~J} / \mathrm{s}-\mathrm{m}^{2}-\mathrm{K}^{4}$
\rightarrow No "medium" required

- All things absorb energy from surroundings
$\Rightarrow \mathrm{H}_{\text {absorb }}=\mathrm{eA} \mathrm{\sigma} \mathrm{~T}_{0}{ }^{4}$
» T_{0} is temperature of surroundings in Kelvin
» good emitters (e close to 1) are also good absorbers

Heat Transfer: Radiation

- All things radiate and absorb electromagnetic energy

$$
\begin{array}{l|r|}
\Rightarrow \mathrm{H}_{\mathrm{emit}}=\mathrm{eA} \mathrm{\sigma} \mathrm{~T}^{4} & \text { Surroundings at } \mathrm{T}_{0} \\
\Rightarrow \mathrm{H}_{\mathrm{absorb}}=\mathrm{eA} \sigma \mathrm{~T}_{0}^{4} & \mathrm{~T} \\
\Rightarrow \mathrm{H}_{\mathrm{net}}=\mathrm{H}_{\mathrm{emit}}-\mathrm{H}_{\mathrm{absorb}}=\mathrm{eA} \sigma\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)
\end{array}
$$

» if $\mathrm{T}>\mathrm{T}_{0}$, object cools down
» if $\mathrm{T}<\mathrm{T}_{0}$, object heats up

Bridge Set from Last Wed

A volume of N_{2} is compressed through three processes as shown. Which process has the greatest decrease in the average kinetic energy of the molecules?

A. a to d B. b to d C. c to d

Only process where T goes down is c to d and average KE depends only on Temp.

First Law of Thermodynamics = Energy Conservation

The change in internal energy of a system (ΔU) is equal to the heat flow into the system (Q) minus the work done by the system (W)

Change in internal energy of system (depends on its Temperature)

Heat flow
into system

Work done by system
(Negative of work done on the gas)

Bridge Set from Last Wed.

$$
\Delta U=Q-W
$$

- A cylinder that has a piston contains one mole of H_{2} and undergoes an expansion that doubles the initial volume of the gas. How much heat is transferred to or from the gas? (assume constant P)

4) Heat flows into gas by amount greater than W
5) Heat flows into gas by amount less than W
6) Heat flows out of gas by amount greater than W
7) Heat flows out of gas by amount l^{f}

First Law of Thermodynamics Isobaric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at constant pressure $p=1000 \mathrm{~Pa}$, where $V_{1}=2 \mathrm{~m}^{3}$ and $V_{2}=3 \mathrm{~m}^{3}$ Find $T_{1}, T_{2}, \Delta U, W, Q .(R=8.31 \mathrm{~J} / \mathrm{k}$ mole $)$

1. $P V_{1}=n R T_{1} \Rightarrow T_{1}=P V_{1} / n R=120 K$

2. $P V_{2}=n R T_{2} \Rightarrow T_{2}=P V_{2} / n R=180 K$
3. $\Delta \mathrm{U}=(3 / 2) n \mathrm{R} \Delta \mathrm{T}=1500 \mathrm{~J}$
$\Delta U=(3 / 2) p \Delta V=1500 \mathrm{~J}$ (has to be the same)
4. $W=p \Delta V=1000 J$
5. $Q=\Delta U+W=1500+1000=2500 \mathrm{~J}$

First Law of Thermodynamics Isochoric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at constant volume $V=2 \mathrm{~m}^{3}$, where $T_{1}=120 \mathrm{~K}$ and $T_{2}=180 \mathrm{~K}$ Find Q.

1. $Q=\Delta U+W$
2. $\Delta \mathrm{U}=(3 / 2) n \mathrm{R} \Delta \mathrm{T}=1500 \mathrm{~J}$

3. $W=P \Delta V=0 J$
4. $Q=\Delta U+W=1500+0=1500 \mathrm{~J}$

Comparing it to last slide where we had a constant pressure process (and same $T_{1} \& T_{2}$): Less heat is required to raise T at const. volume than at const. pressure

First Law Questions

Change in internal energy of system

Work done bysystem Heat flow into system

Some questions:

- Which part of cycle has largest magnitude change in internal energy, ΔU ?

$$
2 \rightarrow 3\left(\text { since } \Delta U=3 / 2\left(p_{3} V_{3}-p_{2} V_{2}\right)=3 / 2 n R \Delta T\right)
$$

- Which part of cycle involves the most work done by system?
$1 \rightarrow 2$ is most (positive), $3 \rightarrow 1$ is $0,2 \rightarrow 3$ is negative. Net W is POSITIVE
- What is change in internal energy for full cycle?
$\Delta \mathrm{U}=0$ for closed cycle (since both p \& V [and T] are back where they started)
- What is net heat into system for full cycle (positive or negative)?
$\Delta U=0 \Rightarrow Q=W=$ area of triangle (>0)

Special PV Cases

- Constant Pressure (isobaric)
- Constant Volume (isochoric)

- Constant Temp $\Delta \mathrm{U}=0$ (isothermal)
- Adiabatic $\mathrm{Q}=0$

Reversible?

- Most "physics" processes are reversible: you could play movie backwards and still looks fine. (drop ball vs throw ball up)
- Exceptions:
\Rightarrow Non-conservative forces (friction)
\Rightarrow Heat Flow:
» Heat never flows spontaneously from cold to hot

Summary:

\Rightarrow 1st Law of Thermodynamics: Energy Conservation

Change in internal energy of system
(Depends only on Temperature)

Work done by system
(Negative of work done on the gas)

Heat flow
into system

- point on $\mathrm{p}-\mathrm{V}$ plot completely specifies state of system ($\mathrm{pV}=\mathrm{nRT}$)
- work done is area under curve

- U depends only on $T(U=3 n R T / 2=3 p V / 2)$
- for a complete cycle $\Delta \mathrm{U}=\mathrm{O} \Rightarrow \mathrm{Q}=\mathrm{W}$

