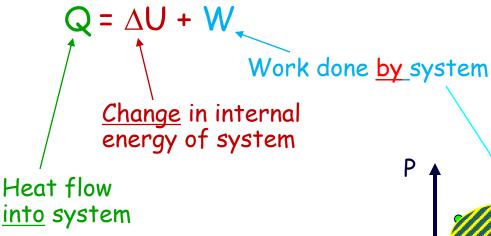
Physics 101: Lecture 29 Thermodynamics II

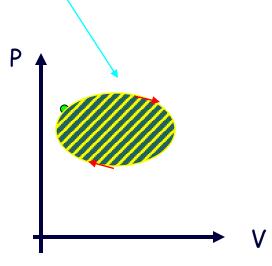
Recap:

- →1st Law of Thermodynamics
- energy conservation

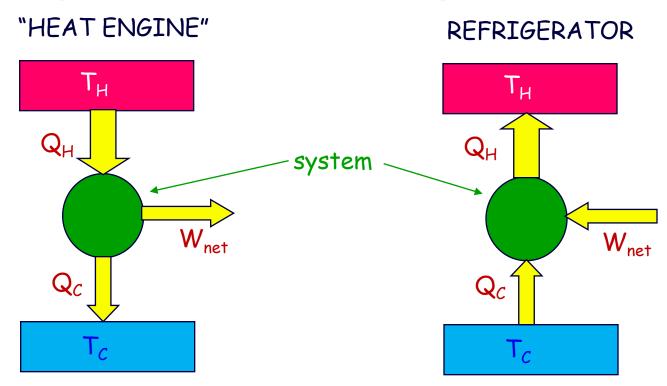


- U depends only on T (U = 3nRT/2 = 3PV/2)
- point on p-V plot completely specifies state of system (PV = nRT)
- work done is area under curve
- for a complete cycle

$$\Delta U=0 \Rightarrow Q=W$$



Engines and Refrigerators



- ullet system taken in closed cycle $\Rightarrow \Delta U_{system}$ = 0
- therefore, net heat absorbed = work done by system

$$Q_H = Q_C + W_{net}$$
 (Engine)
 $Q_C + W_{net} = Q_H$ (Refrigerator)
energy into green blob = energy leaving green blob

Heat Engine: Efficiency

The objective: turn heat from hot reservoir into work

The cost: "waste heat"

1st Law: $Q_H - Q_C = W$

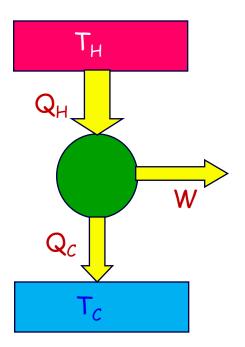
efficiency $e \equiv W/Q_H$

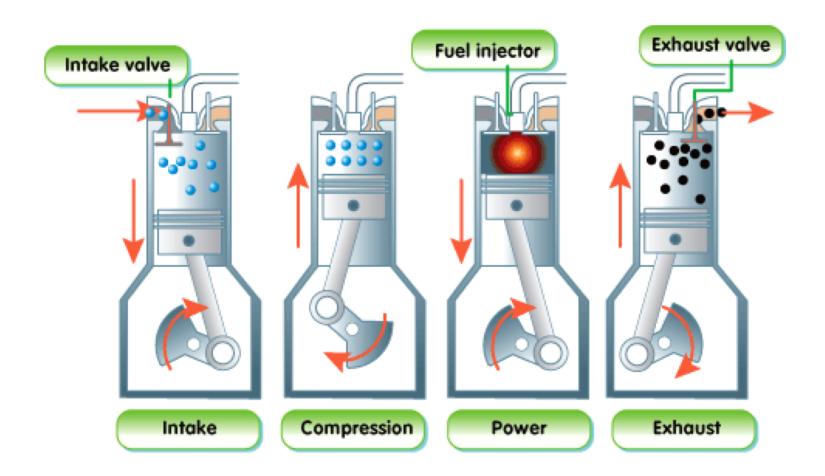
=W/Q_H

 $= (Q_H - Q_C)/Q_H$

 $= 1 - Q_C/Q_H$

HEAT ENGINE





Rate of Heat Exhaustion

An engine operating at 25% efficiency produces work at a rate of 0.10 MW. At what rate is heat exhausted into the surrounding?

Efficiency
$$e = W_{net}/Q_H = > Q_H = W_{net}/e$$

The question is asking for $Q_C/\Delta t$.
 $Q_H/t = (W_{net}/t)/e = 0.10 \text{ MW}/0.25 = 0.40 \text{ MW}$

From 1st Law of Thermo: $W_{net} = Q_H - Q_C$; divide by Δt : $W_{net}/\Delta t = (Q_H - Q_C)/\Delta t$ $0.10 \text{ MW} = 0.40 \text{ MW} - Q_C/\Delta t$

$$Q_C/\Delta t = 0.40 \text{ MW} - 0.10 \text{ MW} = 0.3 \text{ MW}$$

Refrigerator: Coefficient of Performance

The objective: remove heat from cold reservoir

The cost: work

1st Law: $Q_H = W + Q_C$

coefficient of performance

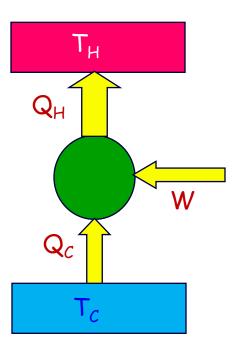
$$CP \equiv Q_C/W$$

= $Q_C/(Q_H - Q_C)$

Best CP you can have is Carnot coeff. of performance (more on Carnot in 4 slides):

$$CP_{Carnot} = T_C/(T_H - T_C)$$

REFRIGERATOR



Entropy (S)

- A measure of "disorder" (more entropy means more disorder)
- A property of a system (just like P, V, T, U)
 - related to number of number of different possible "states" of system
- Examples of increasing entropy:
 - →ice cube melts
 - →gases expand into vacuum (recall demo of vacuum cannon)
- Change in entropy:

$$\rightarrow \Delta S = Q/T$$

- » >0 if heat flows into system (Q>0)
- \rightarrow <0 if heat flows out of system (Q<0)

A word on the Checkpoint Q on mixing yellow and blue water

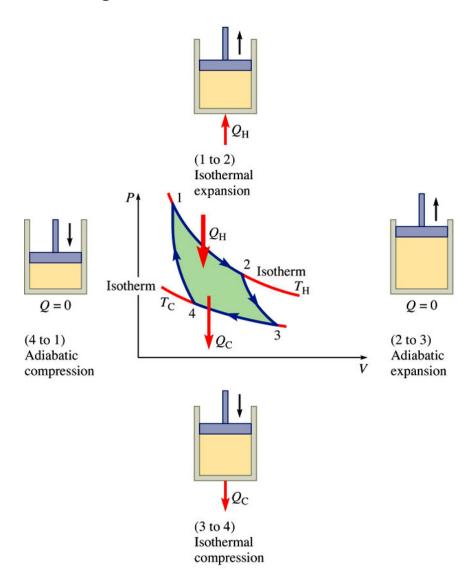
- Process is irreversible—the mixing creates a batch of green water that we cannot separate back into two batches of blue and yellow water, so entropy increases.
- Another way to look at it. Big batch of water has more space for molecules to move around than the two smaller batches so it is more disordered.
- Answers to Checkpoint: 1. A 2. D 3. A
- (To answer 3, use last equation is slide 8: "refrigerators" from the last prelecture, or last eqn on slide 8 in this lecture, to compare impact of raising T_C by 10 or lowering T_H by 10)

Second Law of Thermodynamics

- The entropy change (Q/T) of the system+environment ≥ 0
 - \rightarrow never < 0
 - order to disorder
- Consequences
 - → A "disordered" state cannot spontaneously transform into an "ordered" state
 - → No engine operating between two reservoirs can be more efficient than one that produces 0 change in entropy. This is called a "Carnot engine"

Carnot Cycle

- Idealized Heat Engine
 - **→**No Friction
 - $\rightarrow \Delta S = Q/T = 0$
 - **→**Reversible Process
 - » Isothermal Expansion
 - » Adiabatic Expansion
 - » Isothermal Compression
 - » Adiabatic Compression



Engines and the 2nd Law

The objective: turn heat from hot reservoir into work

The cost: "waste heat"

1st Law: $Q_H - Q_C = W$

efficiency $e = W/Q_H = (Q_H - Q_C)/Q_H = 1 - Q_C/Q_H$

$$\Delta S = Q_C/T_C - Q_H/T_H \ge 0$$

 $\Delta S = 0$ for Carnot

Therefore, $Q_C/Q_H \ge T_C/T_H$

 $Q_C/Q_H = T_C/T_H$ for Carnot

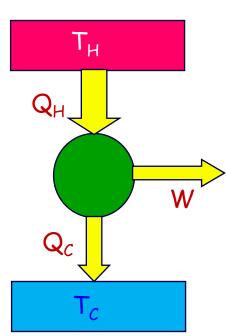
Therefore $e = 1 - Q_C/Q_H \le 1 - T_C/T_H$

 $e = 1 - T_C / T_H$ for Carnot

e = 1 is forbidden!

e largest if $T_C \ll T_H$

HEAT ENGINE



Example 1

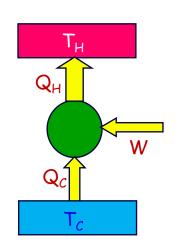
Consider a hypothetical refrigerator that takes 1000 J of heat from a cold reservoir at 100K and ejects 1200 J of heat to a hot reservoir at 300K.

Answers:

200 J

- 1. How much work does the refrigerator do?
- 2. What happens to the entropy of the universe?

 Decreases
- 3. Does this violate the 2nd law of thermodynamics?



$$Q_C = 1000 \text{ J}$$
 Since $Q_C + W = Q_H$, $W = 200 \text{ J}$

$$\Delta S_{H} = Q_{H}/T_{H} = (1200 \text{ J}) / (300 \text{ K}) = 4 \text{ J/K}$$

$$\Delta S_{C} = -Q_{C}/T_{C} = (-1000 \text{ J}) / (100 \text{ K}) = -10 \text{ J/K}$$

$$\Delta S_{TOTAL} = \Delta S_{H} + \Delta S_{C} = -6 \text{ J/K} \implies \text{decreases (violates 2}^{\text{nd}} \text{ law})$$

Example 2

Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work.

Does this device violate **the second law** of thermodynamics?

- 1. Yes ← correct
- 2. No

total entropy decreases.

$$\Delta S_{H} = Q_{H}/T_{H} = (1000 \text{ J}) / (300 \text{ K}) = 3.33 \text{ J/K}$$

 $\Delta S_{C} = Q_{C}/T_{C} = (200 \text{ J}) / (100 \text{ K}) = 2 \text{ J/K}$
 $\Delta S_{TOTAL} = \Delta S_{C} - \Delta S_{H} = -1.33 \text{ J/K} \implies \text{(violates 2}^{\text{nd}} \text{ law)}$

- W (800) = Q_{hot} (1000) Q_{cold} (200)
- Efficiency = W/Q_{hot} = 800/1000 = 80%
- Max eff = $1-T_c/T_h$ =1 100/300 = 67%

Summary

- First Law of thermodynamics: Energy Conservation
 - \rightarrow Q = Δ U + W
- Heat Engines
 - → Efficiency = = 1- Q_C/Q_H
- Refrigerators
 - → Coefficient of Performance = $Q_C/(Q_H Q_C)$
- Entropy $\Delta S = Q/T$
- Second Law: Entropy always increases!
- Carnot Cycle: Reversible, Maximum Efficiency $e = 1 T_c/T_h$

It has been a pleasure teaching this class!