

What concepts did you find most difficult, or what
would you like to be sure we discuss in lecture?

- Acceleration vectors
- Will you go over the third checkpoint
- Do harder problems in class
- I've never been more confused in my life
- Nothing!

Trigonometric review, sines and cosines

PHYS 101: Lecture 3

Review! Kinematics: Free Fall, A Special Case

-Free Fall: An object's motion is caused by gravity alone
$\Rightarrow a=g$, the acceleration of gravity
$\Rightarrow g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
\Rightarrow Important Kinematic Expressions

$$
\begin{aligned}
& » y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2} \\
& » v_{y}=v_{0_{y}}-g t \\
& » v_{y}^{2}=v_{0}^{2}-2 g\left(y-y_{0}\right)
\end{aligned}
$$

PHYS 101: Lecture 3

Review! A Few Facts About g

- For Gravity:
\Rightarrow Acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ near the surface of the earth.
$\Rightarrow g$ always points downward
\Rightarrow Position may be positive, zero or negative
\Rightarrow Velocity may be positive, zero or negative

- To Calculate position or velocity as a function of time:
\Rightarrow Position: $y=y_{0}+v_{0 y} t-\frac{1}{2} g t^{2}$
\Rightarrow Velocity: $v_{y}=v_{0 y}-g t$
- To calculate velocity as a function of position:
$\Rightarrow v_{y}^{2}=v_{0 y}^{2}-2 g\left(y-y_{0}\right)$
PHYS 101: Lecture 3

Tip for applying kinematic equations

- Always pick a point in the trajectory and apply kinematic equation(s) for that point
- A lot of times you will have two unknowns after writing kinematic equations (e.g., maximum height reached by a ball and time it took to get there).
- Have faith in the process and use algebra to solve for unknowns. (Recall that you need 2 eqns to solve for 2 unknowns)

PHYS 101: Lecture 3
PHYS 101: Lecture 3

Free Fall Demo:
 Two Dropped Objects

Which will hit the ground first, the feather or the coin?
A) coin
B) Same
C) Feather

Note: Free fall only works when air resistance is negligible!

PHYS 101: Lecture 3

Fred's Free Fall Calculations

Fred throws a ball $30 \mathrm{~m} / \mathrm{s}$ vertically upward
What is the maximum height the ball reaches?
What is the speed at max height? $v=0 \mathrm{~m} / \mathrm{s}$ at the maximum height.

- $v^{2}=v_{o}^{2}-2 g \Delta y$
- $\Delta y=\left(v^{2}-v_{o}^{2}\right) /(-2 g)$
- $=\frac{-30^{2} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}{-2 \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}$

Or, use: $\mathrm{v}_{\text {top }}=\mathrm{v}_{\mathrm{o}}-\mathrm{gt}$ to get t
Then $y=y_{0}+v_{0} t-(1 / 2) g t^{2}$
$=46 \mathrm{~m}$.

PHYS 101: Lecture 3

Fred's Free Fall Calculations

Fred throws a ball $30 \mathrm{~m} / \mathrm{s}$ vertically upward.
How long does it take to reach its maximum height?
$\checkmark v=v_{0}-g t$
$\checkmark t=\frac{v-v_{0}}{a}$ How long does it take the ball to
$\checkmark=\frac{0-30 \frac{\mathrm{~m}}{\mathrm{~s}}}{-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}$ make the complete round trip?
$\checkmark=3.1$ seconds
PHYS 101: Lecture 3

Free Fall Facts:

\checkmark Remember: $a=-g$.
\checkmark Velocity becomes more and more negative if object is dropped from rest.
\checkmark If $v>0$, speed decreases.
\checkmark If $v<=0$ speed increases.

PHYS 101: Lecture 3

Vectors

- Vector:

A quantity that has:

- size (called magnitude)
- direction
- In physics lots of quantities are vectors such as:
- velocity
- acceleration
- forces

PHYS 101: Lecture 3

Vectors

- We represent vectors with arrows
\Rightarrow The length of the arrow is the magnitude of the vector
\Rightarrow The direction is shown by which way the arrow points

- Rules for dealing with vectors:
\Rightarrow You can move a vector in space and it is the same vector, as long as you do not change:
» the magnitude (length of the arrow)
» the direction
\Rightarrow These two red vectors are the same.

PHYS 101: Lecture 3

Subtracting Vectors

- To subtract vectors:
\Rightarrow add the negative of the vector you are subtracting
\Rightarrow The negative of a vector has the same length but points in the opposite direction.

PHYS 101: Lecture 3

Adding and subtracting vectors

- To add two vectors, put the tail of the second vector at the tip of the first vector, and draw the sum from the tail of the first vector to the tip of the second

- Let's perform $\vec{A}+\vec{B}=\vec{C}$:

PHYS 101: Lecture 3

Swimmer Example: Velocity ${ }^{\text {y }}$ is a Vector

Ann needs to swim across a river.

Ann can swim 5 mph with respect to the water.
The river flows 3 mph East (i.e. from Ann's left to Ann's
right).
At what angle should Ann swim to end directly to the other side of the river?
Clicker Q: Step 1: Should Ann swim:

PHYS 101: Lecture 3

Swimmer Example: Velocity"L is a Vector

Ann needs to swim across a river.
Ann can swim 5 mph with respect to the water.
The river flows 3 mph East (i.e. from Ann's left to Ann's right).
At what angle should Ann swim to end directly to the other side of the river?

Step 2: The vector diagram for Ann's swim will look like this:

PHYS 101: Lecture 3

Swimmer Example: Velocity' is a Vector

Ann needs to swim across a river.
Ann can swim 5 mph with respect to the water.
The river flows 3 mph East (i.e. from Ann's left to Ann's right)
At what angle should Ann swim to end directly to the other side
of the river?
Step 3: Find θ :
From the triangle, we know: $\sin \theta=\mathrm{v}_{\text {water }} / \mathrm{v}_{\text {Ann }}=3 / 5$

So solve for $\theta: \quad \theta=\arcsin (3 / 5)=36.9^{\circ}$
How would you go about finding
the green vector, which is Ann's
velocity relative to the ground?
PHYS 101: Lecture 3

