Physics 101 Lecture 4 Kinematics: Projectile and Circular Motion

PHYS 101: Lecture

What concepts did you find most difficult, or what would you like to be
sure we discuss in lecture?

- More conceptual problems ... sometimes the problems without physical numbers can be the most challenging.
- None
- the trigonometry
- what would happen if the horizontal component was altered?
- can we go over more practice problems for circular motion.

Review: 1-dimensional

Kinematics Example

- A car is traveling $30 \mathrm{~m} / \mathrm{s}$ and applies its breaks (constant
deceleration) to stop after a distance of 150 m .
- How fast is the car going after it has traveled $1 / 2$ the
distance (75 meters)? distance (75 meters) ?
$\begin{array}{lll}\text { A) } v<15 \mathrm{~m} / \mathrm{s} & \text { B) } v=15 \mathrm{~m} / \mathrm{s} & \text { C) } v>15 \mathrm{~m} / \mathrm{s}\end{array}$
Note: It's NOT half, so relation is not linear
Let's think about a plan for solving this problem
Plan:

1. First use kinematics to find acceleration
from first problem statement
2. Use kinematics again to find speed at $x=75 \mathrm{~m}$

PHYS 101: Lecture

```
Review: 1-dimensional Kinematics Example
    - A car is traveling 30 m/s and applies its breaks to stop
    after a distance of }150\textrm{m}\mathrm{ .
    - How fast is the car going after it has traveled }1/2\mathrm{ the
        distance (75 meters)?
    - x = \mp@subsup{x}{0}{}+\mp@subsup{v}{0}{}t+\frac{1}{2}a\mp@subsup{t}{}{2}
    - v= vo + at
    v}\mp@subsup{v}{}{2}=\mp@subsup{v}{0}{2}+2a(x-\mp@subsup{x}{0}{}
    Plan
    1. Find acceleration: 0=(30 m/s) 2}+2a(150\textrm{m})\mathrm{ , so }a=-3\textrm{m}/\mp@subsup{\textrm{s}}{}{2
    2. Use kinematics again to find speed at }x=75\textrm{m}
        v
2. Use kinematics again to find speed at \(x=75 \mathrm{~m}\)
\[
v^{2}=\left(30 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2\left(-3 \mathrm{~m} / \mathrm{s}^{2}\right)(75 \mathrm{~m}), \text { so } \mathrm{v}=21.2 \mathrm{~m} / \mathrm{s}
\]
```

PHYS 101: Lecture 4

Important Concepts for Motion in 2 Dimensions

- X and Y directions are Independent!
- Position, velocity and acceleration are vectors (they have directions and magnitudes)
- Vectors have special rules

PHYS 101: Lecture

Kinematics in Two Dimensions:

 Equations and Facts| $\begin{aligned} & x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2} \\ & v_{x}=v_{0_{x}}+a_{x} t \\ & v_{x}^{2}=v_{0 x}^{2}+2 a_{x} \Delta x \end{aligned}$ | $\begin{aligned} & y=y_{0}+v_{0 y} t+\frac{1}{2} a_{y} t^{2} \\ & v_{y}=v_{0_{y}}+a_{y} t \\ & v_{y}^{2}=v_{0 y}^{2}+2 a_{y} \Delta y \end{aligned}$ |
| :---: | :---: |
| Remember: x and y d
 Independent means:
 Calculate the x-direction the y-direction by itself, th
 PHYS 101: Lecture 4 | tions are independent.
 itself and use math to combine if needed |

Demo: Ball shot vertically from moving train
This demo illustrates the independence
of x and y motion.
PHYS I01: Lecture 4

Projectile Motion: A Special Case

$\mathrm{a}_{\mathrm{x}}=0$	$\mathrm{a}_{\mathrm{y}}=-\mathrm{g}$
$>x=x_{0}+v_{0 x} t$	
$>v_{x}=v_{0 x}$	$>y=y_{0}+v_{0 y} t-1 / 2 g t^{2}$
	$>v_{y}=v_{0 y}-g t$
$>v_{y}{ }^{2}=v_{0 y}{ }^{2}-2 g \Delta y$	

Procedure:

- Choose standard coordinate system (that's how + and - are determined)
- Solve kinematics equations in each direction separately.

As time evolves, motion in each direction proceeds independently
PHYS 101: Lecture 4

Page 2

Ex: Throw ball to your friend at a window You throw a ball to your friend at a window of a building 12 meters above and 5 meters to the right of you. Determine the speed and angle you should throw it such that the ball "just reaches" your friend moving at 0 speed in y -direction.

Ex: Throw ball to your friend at a window You throw a ball to your friend at a window of a building 12 meters above and 5 meters to the right of you. Determine the speed and angle you should throw it such that the ball "just reaches" your
friend moving at 0 speed in y-direction.

PHYS 101: Lecture 4

Ex: Throw ball to your friend at a window You throw a ball to your friend at a window of a building 12 You throw a ball o your frient at a window of a building 12 , and angle you should throw it such that the ball "just reaches" your friend moving at 0 speed in y-direction.

Projectile Motion: Summary

- Velocity, position, and acceleration are vector
\Rightarrow They have both magnitude and direction
\Rightarrow Vector magnitude: $|A|=\sqrt{A_{x}^{2}+A_{y}^{2}}$
\Rightarrow Vector direction (described by an angle): $\theta=\tan ^{-1} \frac{A_{y}}{A_{x}}$
- x - and y -directions are independent
- Kinematic Equations for 2-D: Must be able to identifif variables in

PHYS 101: Lecture 4

Motion in a Circle with Constant Speed: Uniform circular motion
(Here "uniform" means "constant speed")

- If an object moves with constant speed v in a perfect circle of radius r then:
\Rightarrow Its velocity vector is constantly changing
direction (though its speed is constant). As
tu, it must be acceleratin
\Rightarrow The magnitude of the object's acceleration of the circle. (Centripetal Acceleration)
- Unless the acceleration is v^{2} / r, the motio
will not be circular with constant speed.
- Note: A car could also have a "tangential acceleration.
PHYS 101: Lecture 4

Demo: Consider the wine glass on a plate, water in bucket..

Page 4

