PHYS 101 Lecture 5 Dynamics: Forces \& Newton's Laws

Newton's 3 Laws of Motion

(We will cover the first two now and the third later)

- NEWTON'S FIRST LAW:
$>$ If there is zero net force on an object (body), then its speed and direction will not change. Fred the Bear Demo
> Inertia (Air track demo, dishes demo, ball on string)

Newton's Laws of Motion

The one we will use all the time is:
NEWTON'S SECOND LAW (I will abbreviate as N\#2)
If a nonzero net force is acting on an object its motion will change:
$\mathbf{F}_{\mathrm{Net}}=\mathrm{m} \boldsymbol{a}$ (F and a are vectors)

- The net force is the vector sum of all the individual forces acting on an object.
- To apply N\#2, you must
\Rightarrow identify/isolate the object or body that you are analyzing.
\Rightarrow identify each individual force acting on the object.
\Rightarrow You then add (as vectors) the individual forces to get the net force.

There will only be two types of forces we will study in PHYS101

- Type 1: Contact forces (must touch object to exert force)
\Rightarrow Normal: Perpendicular to surface
\Rightarrow Friction: Parallel to surface (two types)
\Rightarrow Tension: ropes \& strings
\Rightarrow Springs: $F=-k x$
\Rightarrow Other forces that touch object (e.g., a hand pushing)

This is the list of contact forces. That's It!!

There will only be two types of forces we will study in PHYS 101

- Tupe 2: Non-contact forces: Action at a distance forces. Only one in Phys 101-gravitational force
\Rightarrow In PHYS 101 we study the gravitational force (weight)
\Rightarrow Near the earth's surface, $W=m_{\text {object }} g$
\Rightarrow Note: Any two masses will exert an attractive gravitational force on each other-more on that at a later lecture

In Phys 102: electromagnetic force.

PHYS 101: Lecture 5

Applying Newton's Second Law: The Free-Body Diagram (FBD)

- A free-body diagram.
\Rightarrow isolates the object being analyzed
\Rightarrow has labeled arrows (vectors) for each individual force acting on the object.
- The vector length is the magnitude of the force
- The vector direction is the direction in which the force acts
- The net force is the vector sum of all the individual forces acting on an object.
- A FBD should NEVER show a net force.
\Rightarrow The net force is the sum of the forces in the FBD.
\Rightarrow Draw the forces with tail starting on object
PHYS 101: Lecture 5

Example

A block of mass $m=0.4 \mathrm{~kg}$ is being pushed by two different people with the forces shown. Consider the floor to be frictionless.
What is the acceleration of the block?

N means Newtons for units of force $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$
Isolate body: The block
Clicker Q: Which FBD is appropriate for this situation?

A

B
PHYS 101: Lecture 5

Procedure for applying Newton's Second Law How the game is played (or avoiding spooky rules)
If you wish to memorize anything, memorize what's below.

- Identify/isolate body or obiect of interest.
- Draw a FBD (to identify all forces acting on body)
- Apply Newton's Law \#2 (find $\mathrm{F}_{\text {net }} \&$ do: $\mathbf{F}_{\text {net }}=\mathrm{m} \boldsymbol{a}$)
- To apply Newton's Law \#2:
\Rightarrow draw a coordinate system
\Rightarrow apply Newton's Law \#2 in the x and y directions.
- $\mathbf{F}_{\mathrm{Net}}=\mathrm{m} \boldsymbol{a}$ is a vector equation.
\Rightarrow It must be satisfied independently in the x and y directions.
- Use algebra to solve for the unknown quantity.
- Enjoy the experience!

PHYS 101: Lecture 5

Example

A block of mass $m=0.4 \mathrm{~kg}$ is being pushed by two different people with the forces shown. Consider the floor to be frictionless. What is the acceleration of the block?

Using the standard coordinate system shown, let's decompose the forces in the x and y directions and apply Newton's Second Law.

x-direction	y-direction
$\begin{aligned} F_{1}-F_{2, x} & =m a_{x} \\ 4 \mathrm{~N}-3 \mathrm{~N}\left(\cos 30^{\circ}\right) & =m a_{x} \\ 4 \mathrm{~N}-2.6 \mathrm{~N} & =(0.4 \mathrm{~kg}) a_{x} \end{aligned}$	$\begin{array}{r} -F_{2, y}-W+N=m a_{y} \\ -3 N\left(\sin 30^{\circ}\right)-m g+N=m a_{y} \end{array}$
Solve for a_{x} $a_{x}=(4 \mathrm{~N}-2.6 \mathrm{~N}) / 0.4 \mathrm{~kg}=3.5 \mathrm{~m} / \mathrm{s}^{2}$	Note: $\mathrm{N}>\mathrm{mg}=3.92 \mathrm{~N}$
Clicker Q : What can you say about a_{y} ?	$\begin{array}{lll}\text { A) } a_{y}<0 & \text { B) } a_{y}>0 & \text { C) } a_{y}=0\end{array}$
So normal force must be: $\mathrm{N}=\mathrm{W}+\mathrm{F}_{2, y}=(0.4$ PHYS 101: Lecture 5	$\mathrm{g})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+1.5 \mathrm{~N}=5.42 \mathrm{~N}$

\square
\square
\square
\square

To avoid this sad situation in the
future...don't apply "spooky rules"

- Resist resorting to "numerology," or to tempting but unfounded intuitions
- Look to physics laws and procedures to apply
- Check for consistency in answers
$>$ In this last question many of you did not:
$>$ Isolate the body (the 2 kg block) and identify the forces acting on it (FBD)
>Apply a physics law (Newton's Second Law, $\mathrm{F}_{\text {net }}=\mathrm{ma}$)
>But...you did it in the first question!!!! PHYS 101: Lecture 5

Another great example Incline is frictionless: Find as many $m_{1}=10 \mathrm{~kg}$ things as you can

Direction of motion

$\mathrm{N}=$
$\mathrm{T}=$
$a=$

PHYS 101: Lecture 5

Summary of Concepts

- Newton's Law \#1 and \#2
- Contact forces (e.g., friction, tension)
- Action at a distance forces (gravity)
- Problem Solving Tips for Applying N\#2
\Rightarrow Isolate body to be analyzed
\Rightarrow Draw FBD, pick a coordinate system
\Rightarrow Apply physics laws: $\mathbf{F}_{\text {net }}=$ ma
\Rightarrow Use algebra to solve for quantities in x \& y directions
\Rightarrow Avoid spooky rules (unfounded intuitions)

