Physics 101: Lecture 06

Newton's Third Law and Two Dimensional Dynamics

EXAM 1

- Exam 1 will be held Wed 2/21 Fri 2/23
- · You MUST sign up for a time slot here:

https://my.physics.illinois.edu/undergrad/onlineexams/signup-stu

- Exam is computer administered in Loomis 257
- Exam covers Lectures 1-8 (kinematics and dynamics— Newton's Laws; friction; circular motion)
- · No lab the week of exam (good sign-up slot!)
- Discussion IS held the week of the exam
- Contact Dr. Schulte w/ Qs about sign up: eschulte@illinois.edu
- Exam is all multiple choice (3 & 5 choice Qs)
- How to study for exam?

spooky rules

- We saw last lecture how not applying physics ideas can get us in trouble (blocks accelerating together).
- To avoid spooky rules, ask yourself before you jump into solving a problem, "Am I making this up or am I applying concepts and procedures I learned in the prelectures and in class?"

Procedure for applying Newton's Second Law:

A "plan" for solving any N#2 problem

- Identify/isolate *body* or *object* of interest.
- Draw a FBD (to identify all forces acting on body)
- Apply Newton's Law #2 (find F_{net} & do: F_{net} =m \boldsymbol{a})
- To apply Newton's 2nd Law:
 - →draw a coordinate system
 - ⇒apply Newton's 2nd Law in the x and y directions.
- \mathbf{F}_{Net} = m \mathbf{a} is a vector equation.
 - → It must be satisfied independently in the x and y directions.
- Use algebra to solve for the unknown quantity.

Newton's 3rd Law

3. NEWTON'S THIRD LAW

The forces that two interacting objects (bodies) exert on each other are equal in magnitude and opposite in direction. (Push demo; Fire extinguisher + cart)

The two forces, which act on the two interacting bodies, are "action-reaction pairs." Note: action-reaction force pairs act on different bodies.

How to identify action-reaction force pairs

• Once given a force acting on body 1, ask: What body 2 exerts that force? Then the reaction force is the equal and opposite force that body 1 exerts on body 2.

Now: review Newton's Laws by doing problems

Big Idea: Apply N#2 to each block to first find acceleration, then use kinematics to find t.

Justification: The two blocks experience forces and application of N#2 will let you find a

Plan: 1. Identify body(bodies) to be analyzed: In this case, both M1 and M2.

2. Pick usual coordinate system with origin on the ground and draw FBD

3. Apply N#2 to both masses, and be consistent with signs of forces and a.

4. Solve resulting equations for a.

5. Use kinematics for find time for to drop 0.8 m to table

Let's carry out the plan

M1=1.5 kg

M2=2.5 kg

