Physics 101: Lecture 9 Work and Kinetic Energy

• Previously:

- Used Newton's #2 to find net force, acceleration, and from there other stuff like speed, distance moved, etc. This is a pain because of vectors...
- There is an easier way to do **some** of this with *scalars*!

Energy - A Scalar!

- Forms
 - →Kinetic Energy Motion (Today)
 - →Potential Energy Stored (Next lecture)
 - **→**Heat later
 - \rightarrow Mass (E=mc²) phys 102
- Units: Joules = $kg m^2/s^2 = N m$

12

Energy is Conserved

- Energy is "Conserved" meaning it cannot be created nor destroyed
 - →Can change form
 - →Can be transferred
- Total Energy does not change with time.
 - →1. Calculate total energy BEFORE a process
 - →2. Calculate total energy AFTER the process
 - →They MUST be equal!!!

This is a BIG deal!

10

Work: Energy Transfer due to Force

- Force to lift trunk at constant speed
 - ⇒Case a $T_a mg = 0$ $T_a = mg$
 - →Case b $2T_b$ mg =0 $T_b = \frac{1}{2}$ mg
- But in case b, trunk only moves ½ distance you pull rope.

Work by Constant Force: Clicker Qs A) W>0 B) W=0 C) W<0 Only component of force parallel to direction of motion does work! $W = F d \cos \theta$ $W_F < 0: 90 < \theta < 180 : \cos(\theta) < 0$ $W_F = 0: \theta = 90 : \cos(\theta) = 0$ $W_F < 0: 90 < \theta < 180 : \cos(\theta) < 0$ $W_F < 0: 90 < \theta < 180 : \cos(\theta) < 0$ $W_F < 0: 90 < \theta < 180 : \cos(\theta) < 0$ $W_F < 0: 90 < \theta < 180 : \cos(\theta) < 0$

Kinetic Energy: Motion

• Apply constant force along x-direction to a point particle *m*.

$$W = F \Delta x$$
= m a Δx
= \(\frac{1}{2}\) m \(\var{v}_f^2 - \var{v}_o^2\)
= \(\frac{1}{2}\) m \(\var{v}_f^2 - \var{v}_o^2\)
= \(\frac{1}{2}\) m \(\var{v}_f^2 - \var{v}_o^2\)

- Work changes ½ m v²
- Define Kinetic Energy $K = \frac{1}{2}$ m v^2

 $W = \Delta K$ For Point Particles

Called the Work-Kinetic Energy Theorem

Example: Block w/ friction

• A block is sliding on a surface with an initial speed of 5 m/s. If the coefficient of kinetic friction, μ_k , between the block and table is 0.4, how far does the block travel before stopping?

Big idea: 1) Apply Work-KE theorem

Plan: 1) Draw FBD to identify Fs

- 2) Apply $W_{tot} = \Delta K$ (only one F does work)
- 3) Solve for distance travelled

5 m/s

Example: Block w/ friction

• A block is sliding on a surface with an initial speed of 5 m/s. If the coefficient of kinetic friction, μ_k , between the block and table is 0.4, how far does the block travel before stopping?

table is 0.4, how far does the block travel before stopping?

2)
$$W_{tot} = \Delta K$$
 $W_N = 0$
 $W_{mg} = 0$
 $W_f = f d \cos(180) = -\mu_k mgd$
 $W_{tot} = -\mu_k mgd = \frac{1}{2} m (v_f^2 - v_o^2)$
 $= \frac{1}{2} m (0 - v_o^2)$
 $= \frac{5 m/s}$

3) Solve for d

 $-\mu_k g d = \frac{1}{2} (0 - v_o^2)$
 $\mu_k g d = \frac{1}{2} v_o^2$
 $d = \frac{1}{2} v_o^2 / \mu_k g$
 $= 3.1 \text{ meters}$

Falling Ball Example

• Ball falls a distance 5 meters. What is final speed?

Solve for v_f : $V_f = sqrt(2'qd) = 9.9 m/s$

Work by Variable Force

 $\bullet W = F_x \Delta x$

- →Work is area under F vs x plot

Work

Distance

 \Rightarrow Spring F = k x

Summary

- Energy is Conserved
- Work = transfer of energy using force
 - →Can be positive, negative or zero
 - \rightarrow W = F d cos(θ)
- Kinetic Energy (Motion)
 - $K = \frac{1}{2} \text{ m v}^2$
- Work = Change in Kinetic Energy
 - \rightarrow W_{Net} = Δ K