Summary of Lenz' law ### Induced EMF ε <u>opposes change</u> in flux Φ - 1. Is Φ *increasing*, *decreasing*, or *constant*? - 2. If Φ increases: ε induces B field opposite external B field ### If Φ decreases: ε induces B field <u>along</u> external B field If Φ is constant: ε is zero, no induced B field 3. Type II RHR gives current direction Curl fingers along IThumb along B_{ind} # Summary of Faraday's law Faraday's law: "Induced EMF" = rate of change of magnetic flux $$\varepsilon = -\frac{\Delta\Phi}{\Delta t}$$ Since $\Phi = BA\cos\varphi$, 3 things can change Φ #### Area of loop 1. $$\varepsilon = -BLv$$ ### Magnetic field B 2. #### Angle φ 3. $$\varepsilon(t) = \omega NBA \sin \omega t$$