Summary of Lenz' law

Induced EMF ε <u>opposes change</u> in flux Φ

- 1. Is Φ *increasing*, *decreasing*, or *constant*?
- 2. If Φ increases:

ε induces B field opposite external B field

If Φ decreases:

ε induces B field <u>along</u> external B field

If Φ is constant: ε is zero, no induced B field

3. Type II RHR gives current direction

Curl fingers along IThumb along B_{ind}

Summary of Faraday's law

Faraday's law: "Induced EMF" = rate of change of magnetic flux

$$\varepsilon = -\frac{\Delta\Phi}{\Delta t}$$

Since $\Phi = BA\cos\varphi$, 3 things can change Φ

Area of loop 1.

$$\varepsilon = -BLv$$

Magnetic field B 2.

Angle φ 3.

$$\varepsilon(t) = \omega NBA \sin \omega t$$