

Phys 102 – Lecture 23

Diffraction

Today we will...

- Learn about diffraction bending of light by objects
 Single slit interference
 Circular aperture interference
- Apply these concepts

Resolution of optical instruments
X-ray crystallography

Single slit interference?

What happens when light passes through a small slit?

Diffraction – the apparent bending of light around an object or aperture

Diffraction & Huygens' principle

Coherent, monochromatic light passes through one narrow slit

Where are the interference maxima and minima?

Single slit diffraction

Consider waves from top and bottom ½ of slit of width a

At this angle, every wave from top ½ of slit interferes destructively with corresponding wave from bottom ½

Destructive: $r_{1'} - r_{1} = r_{2'} - r_{2} = \dots = r_{N'} - r_{N} = a \sin \theta_{1} = \lambda$

1st minimum

Single slit diffraction

Destructive: $r_{1'} - r_1 = r_{2'} - r_2 = \dots = r_{N'} - r_N = a \sin \theta_2 = 2\lambda$

2nd minimum

Single slit diffraction minima

Condition for sixths of slit to interfere destructively

THIS FORMULA LOCATES MINIMA!!

Note the maximum at m = 0, why?

ACT: CheckPoint 1

The width a of the slit in the screen is decreased

What happens to the light pattern on the screen?

A. It gets wider B. Stays the same C. It gets narrower

ACT: Wide double slits

Consider a double slit where the slit width a is not negligible.

The separation d between slits is such that d = 3a.

At an angle θ where $d \sin \theta = 3\lambda$, what do you see on the screen?

A. A maximum

B. A minimum

C. In between

Diffraction in 2D

CheckPoint 2

Diffraction from circular aperture

Maxima and minima will be a series of bright and dark rings on screen

Resolving power

Light through aperture (of eye, camera, microscope, telescope,

etc.) creates diffraction pattern

Two objects are resolved only when:

$$\theta_{obj} \geq \theta_{min} \quad \text{ "Diffraction limit"}$$

Calculation: microscope resolution

A microscope objective has an aperture size D = 6.8 mm, and a focal length f = 4 mm. What is the closest distance two green light sources ($\lambda = 530$ nm) can be to resolve them?

Use small angle approximation:

$$\theta_{min} \approx 1.22 \frac{\lambda}{D} \quad \theta_{obj} \approx \frac{d_{obj}}{f}$$

Want: $\theta_{obj} \ge \theta_{min}$

$$d_{obj} \ge 1.22 \frac{\lambda f}{D} \approx 1.22 \lambda \left(\frac{4 \text{ mm}}{6.8 \text{ mm}}\right) \approx 0.7 \lambda$$

\$\ge 380 \text{ nm}\$

Ultimate limit to resolution: $d_{obj} \approx 0.5 \lambda$

ACT: CheckPoint 3

You are on a distant planet with binary suns. You decide to view them by building a pinhole camera. Light from both suns shines through the hole, but you can only see one spot on a screen.

You should make the pinhole

A. Larger B. Smaller

ACT: Rectangular slit

A goat has a rectangular shaped pupil, with the long axis along the horizontal.

In principle, in which direction should a goat's eye have higher resolution?

A. Horizontal

B. Vertical

Diffraction from a crystal

EM waves of short wavelength scatters off of atoms

Crystals – periodic arrangements of atoms – create same interference pattern as diffraction grating!

Phys. 102, Lecture 23, Slide 16

ACT: Crystal diffraction

In a NaCl crystal, the spacing between atoms is 0.282 nm. Which of the following wavelengths could be used to see a clear diffraction pattern?

A. $\lambda = 0.1 \text{ nm}$

B. $\lambda = 1 \text{ nm}$

C. $\lambda = 10 \text{ nm}$

X-ray crystallography

Given X-ray wavelength λ , diffraction angles θ provide information about distance d between atoms in crystal

As long as $\lambda < d$, small features lead to large θ . BUT need regular ordering of atoms – i.e. a crystal!

Crystalline fiber of DNA

Diffraction pattern of DNA

"Photograph 51" – Rosalind Franklin

Features of pattern:

- 1) Layer lines
- 2) Outer diamond
- 3) Cross pattern
- 4) Missing 4th layer line

Layer lines & diamond pattern

What features in DNA generate layer lines and diamond pattern?

Cross pattern

Why does DNA diffraction generate cross pattern?

ACT: DNA cross pattern

You discover a new structure of DNA in which the diffraction pattern is the same as the "normal" DNA in every respect EXCEPT that the cross makes a more acute angle α

Which statement regarding the new DNA structure must be true?

- A. It cannot be a helix
- B. The helix repeat distance *P* must be different
- C. The helix tilt angle must be different

Missing 4th layer

Why is there no interference maximum at m = 4?

Summary of today's lecture

Single-slit diffraction

Interference minima: $a \sin \theta_m = m\lambda$ $m = \pm 1, \pm 2...$

Circular aperture diffraction

First interference minimum: $D \sin \theta_1 = 1.22 \lambda$

Resolution in optical instruments

Angle subtended by objects ≥ angle of first diffraction minimum

X-ray diffraction

Small distances -> large diffraction angles