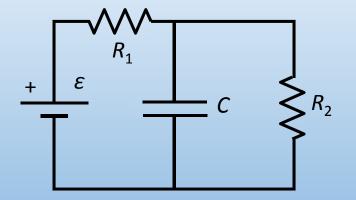
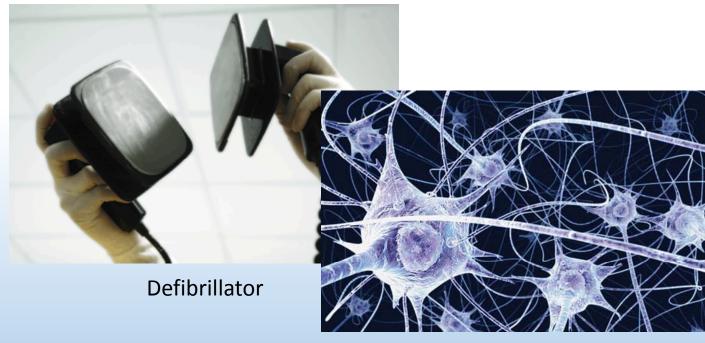

Phys 102 – Lecture 9

RC circuits


Recall from last time...

We solved various circuits with resistors and batteries (also capacitors and batteries)

What about circuits that combine all three... ... RC circuits



RC circuits

Circuits that store and release energy controllably...

Nerve cells

Today we will...

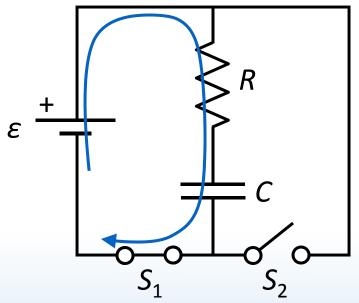
• Learn about *RC circuits*

Charge on capacitors cannot change instantly, so behavior of RC circuit *depends on time*

Analyze RC circuits under different situations

Charging capacitors at short/long times
Discharging capacitors at short/long times
Time dependence

Apply these concepts


Nerve cells and nerve impulses (action potential)

Charging capacitor

Initially the capacitor is uncharged ($Q_0 = 0$) At t = 0 we close switch S_1 .

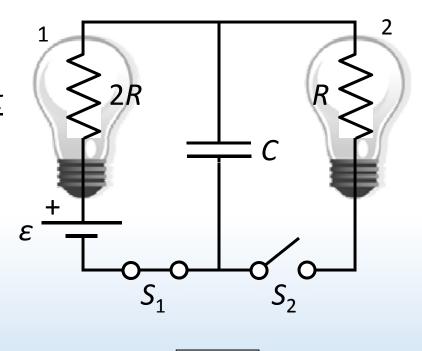
Immediately after:

Current I_0 flows around loop, through CNo charge on $C(Q_0 = 0)$

After a long time $(t = \infty)$:

Charge on C builds until $V_C = \varepsilon$. Current decreases to zero ($I_{\infty} = 0$)

ACT: CheckPoint 1.1


Both switches are initially open and the capacitor is uncharged. What is the current through light bulb 1 \underline{right} \underline{after} switch S_1 is closed?

A.
$$I_b = 0$$

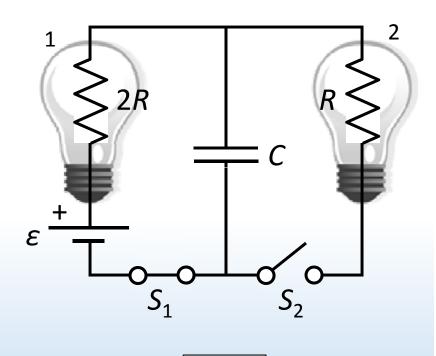
B.
$$I_b = \varepsilon/2R$$

C.
$$I_b = \varepsilon/3R$$

D.
$$I_b = \varepsilon/R$$

DEMO

ACT: charging

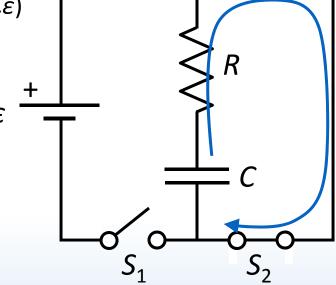

Both switches are initially open and the capacitor is uncharged. What is the voltage across the capacitor \underline{a} long time after switch S_1 is closed?

A.
$$V_C = 0$$

B.
$$V_C = \varepsilon/2$$

C.
$$V_C = \varepsilon$$

D.
$$V_C = 2\varepsilon$$


DEMO

Discharging capacitor

Initially the capacitor is fully charged $(Q_0 = C\varepsilon)$ At t = 0 we close switch S_2 .

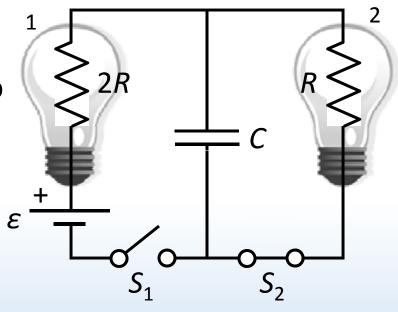
Immediately after:

Current I_0 driven around loop, through C Charge on C from before $(Q_0 = C\varepsilon)$

After a long time $(t = \infty)$:

Charge on C dissipates until $V_C = 0$. Current decreases to zero $(I_{\infty} = 0)$

ACT: CheckPoint 1.5


After S_1 has been closed for a long time, it is opened and S_2 is closed. What is the current through light bulb 2 <u>right after</u> S_2 is closed?

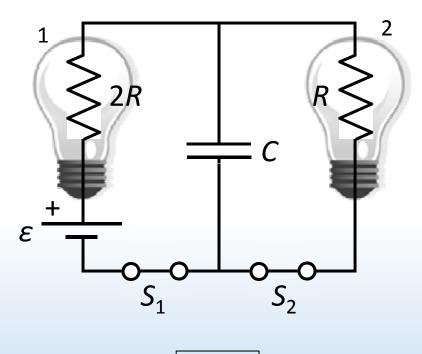
B.
$$I_b = \varepsilon/2R$$

C.
$$I_b = \varepsilon/3R$$

D.
$$I_b = \varepsilon/R$$

DEMO

ACT: RC circuit practice


Now both S_1 <u>and</u> S_2 are closed. What is the current through light bulb 2 a <u>long time after</u> both switches are closed?

A.
$$I_b = 0$$

B.
$$I_b = \varepsilon/2R$$

C.
$$I_b = \varepsilon/3R$$

D.
$$I_b = \varepsilon/R$$

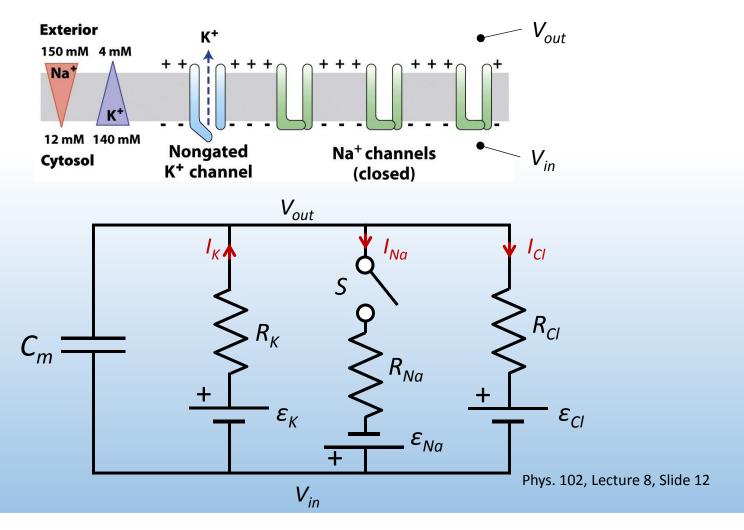
DEMO

Summary: charging & discharging

- Charge (and therefore voltage, since $V_C = Q/C$) on capacitors cannot change instantly
- *Short term* behavior of capacitor:

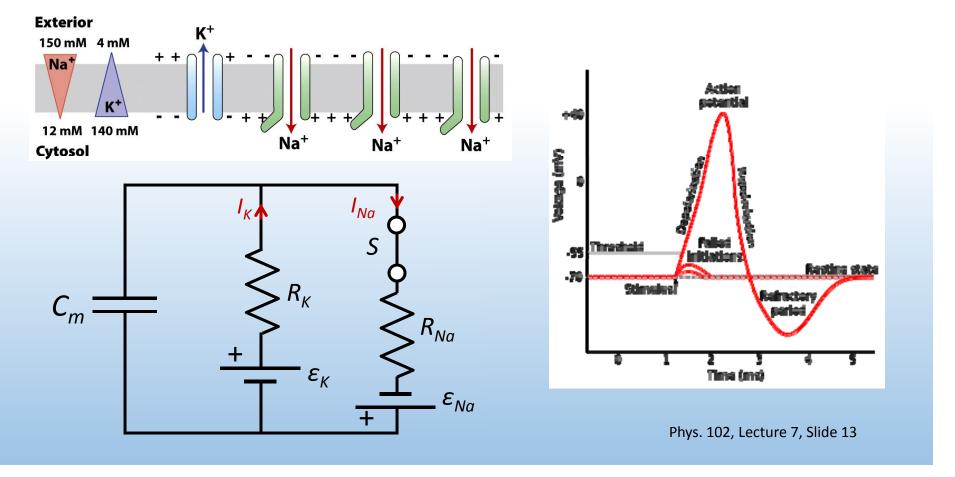
If the capacitor is <u>charging</u>, current *I* drives charge onto it, and *Q* increases (acts like a wire)

If the capacitor is <u>discharging</u>, current I drives charge off of it, and Q decreases (acts like a battery)


• *Long term* behavior of capacitor:

If the capacitor is fully <u>charged</u>, I = 0 and Q is maximum (acts like an open circuit)

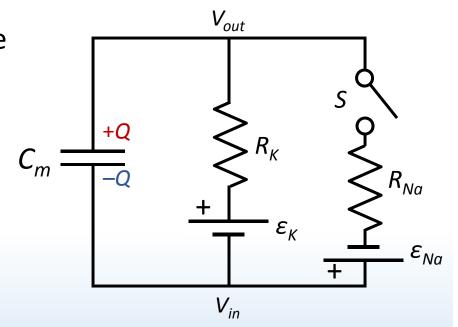
If the capacitor is fully <u>discharged</u>, I = 0 and Q is minimum (acts like an open circuit)


Nerve cell equivalent circuit

Neurons have ion channels (K⁺,Na⁺, and Cl⁻) that pump current into and out of cell (it is *polarized*). Cell membrane also has capacitance

Action potential

At rest, Na⁺ channels in cell are closed. When stimulated, the cell's voltage increases (*depolarization*). If a threshold is exceeded, the Na⁺ channels open & trigger a nerve impulse (*action potential*)

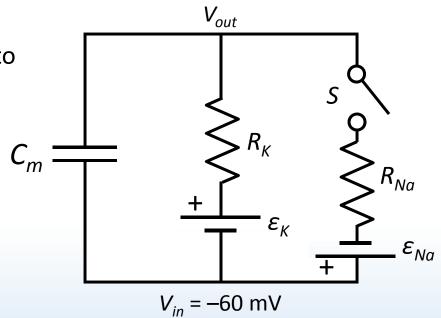

ACT: Resting state of neuron

The neuron has been in resting state for a long time. What is the voltage across the membrane capacitance?

A.
$$V_C > \varepsilon_K$$

B.
$$V_C = \varepsilon_K$$

C.
$$V_C < \varepsilon_K$$



Calculation: action potential I

Some time ago, the cell was stimulated and depolarized to -60 mV, *less* than threshold to open Na⁺ channels. What happens next?

Immediately after:

No current through Na⁺ channel Current I_K driven by K⁺ channel Charge Q_0 on C_m from $V_C = 60$ mV

$$\varepsilon_K$$
 = 70 mV, ε_{Na} = 60 mV,
 R_K = 2 M Ω , R_{Na} = 0.4 M Ω , C_m = 300 pF

After a long time:

Current I_K decays to 0 Charge on C_m returns to rest value

RC circuit time dependence

Charging:

$$\varepsilon - I(t)R - \frac{Q(t)}{C} = 0$$

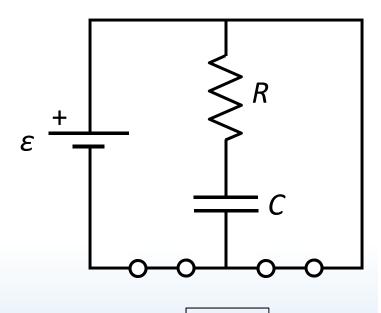
Charge builds up:

$$Q(t) = Q_{\infty}(1 - e^{-t/RC})$$

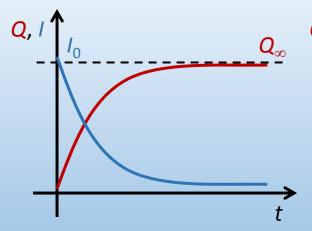
Current decays:

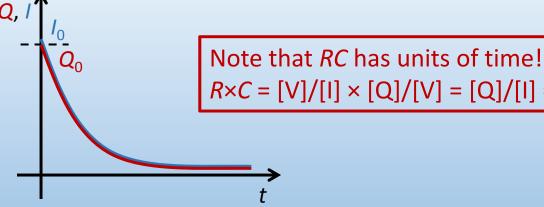
$$I(t) = I_0 e^{-t/RC}$$

Discharging:


$$\frac{Q(t)}{C} - I(t)R = 0$$

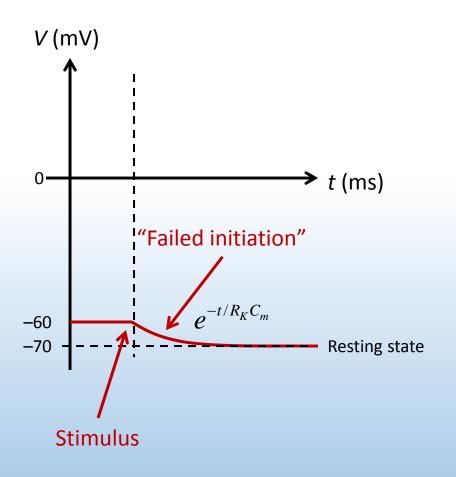
Charge decays:


$$Q(t) = Q_0 e^{-t/RC}$$


Current decays:

$$I(t) = I_0 e^{-t/RC}$$

DEMO



 $R \times C = [V]/[I] \times [Q]/[V] = [Q]/[I] = [t]$

Phys. 102, Lecture 7, Slide 16

Calculation: action potential I

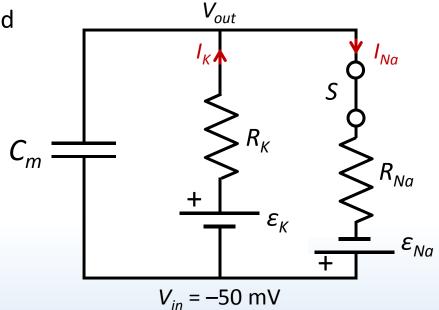
How long does the cell take to return to 90% of its resting voltage?

Cell voltage
$$V_{in} - V_{out} = -V_C = -Q/C$$
:

$$\Delta V(t) = 10e^{-t/R_K C_m}$$

$$\Delta V(t_{90}) = 10(1 - 0.9) = 10e^{-t_{90}/R_K C_m}$$

Take natural log of both sides:


$$t_{90} = -R_K C_m \ln(0.1)$$

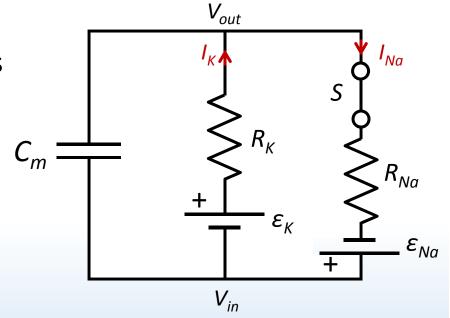
= -(2×10⁹)(300×10⁻¹²)(-2.3)
\(\approx 1.4 \text{ ms}\)

Calculation: action potential II

Now, the cell was stimulated and depolarized to -50 mV, *over* the threshold to open Na⁺ channels. What happens next?

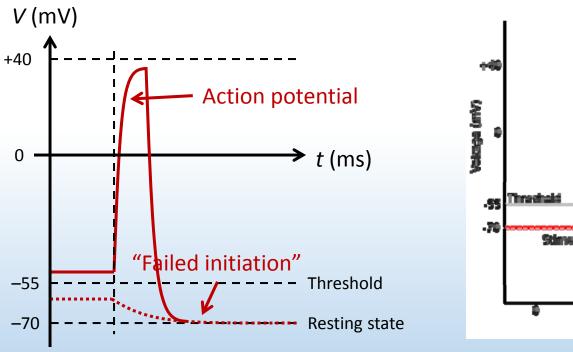
Immediately after:

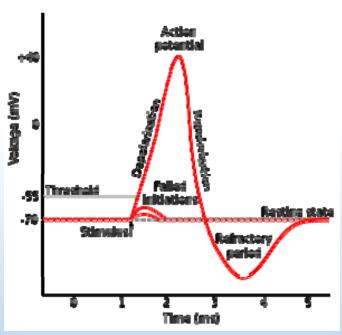
Current I_{Na} through Na⁺ channel Current I_K driven by K⁺ channel Charge Q_0 on C_m from before


$$\varepsilon_K$$
 = 70 mV, ε_{Na} = 60 mV,
 R_K = 2 M Ω , R_{Na} = 0.4 M Ω , C_m = 300 pF

ACT: action potential II

A long time after stimulating the cell, which statement below holds TRUE?

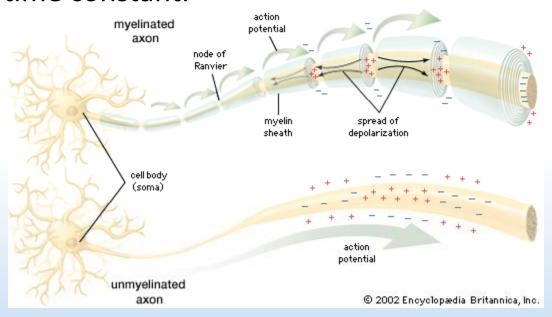

- A. All currents are 0
- B. The currents $I_K = I_{N\alpha} \neq 0$
- C. Voltage across C_m is 0



$$\varepsilon_K$$
 = 70 mV, ε_{Na} = 60 mV,
 R_K = 2 M Ω , R_{Na} = 0.4 M Ω , C_m = 300 pF

Action potential summary

If the stimulus exceeds –55 mV, the Na⁺ channels open, depolarize the cell & trigger an action potential.



Once a +40 mV potential is reached, the Na⁺ channels close again & the cell *repolarizes* to its resting potential.

Myelinated nerve cells

Action potentials propagate down nerve cell at rate determined by the cell's *RC* time constant.

With very few exceptions (ex: C fibres) human neuron fibres are *myelinated*. Myelin reduces *C*, decreasing time constant & increasing propagation speed.

Many neurodegenerative diseases (ex: MS) cause progressive de-myelination.

Summary of today's lecture

RC circuits depend on time

Charge on capacitors cannot change instantly

Short/long times & charging/discharging

```
t = 0: / flows Q onto/off of C, Q increases/decreases
  (charging/discharging)
```

 $t = \infty$: I through C decays to 0, Q reaches maximum/minimum (charging/discharging)

 $\tau = RC$: provides time to charge/discharge

Next week magnetism!