Physics 102	Exam 1	Spring 2014	
Last Name:	First Name	Network-ID	
Discussion Section:	Discussion TA Name:		

Turn off your cell phone and put it out of sight. Keep your calculator on your own desk. Calculators cannot be shared. This is a closed book exam. You have ninety (90) minutes to complete it.

1. Use a #2 pencil. Do not use a mechanical pencil or pen. Darken each circle completely, but stay within the boundary. If you decide to change an answer, erase vigorously; the scanner sometimes registers incompletely erased marks as intended answers; this can adversely affect your grade. Light marks or marks extending outside the circle may be read improperly by the scanner. Be especially careful that your mark covers the **center** of its circle.

2. You may find the version of **this Exam Booklet at the top of page 2**. Mark the version circle in the TEST FORM box near the middle of your answer sheet. **DO THIS NOW!**

3. Print your **NETWORK ID** in the designated spaces at the *right* side of the answer sheet, starting in the left most column, then **mark the corresponding circle** below each character. If there is a letter "o" in your NetID, be sure to mark the "o" circle and not the circle for the digit zero. If and only if there is a hyphen "-" in your NetID, mark the hyphen circle at the bottom of the column. When you have finished marking the circles corresponding to your NetID, check particularly that you have not marked two circles in any one of the columns.

4. Print **YOUR LAST NAME** in the designated spaces at the *left* side of the answer sheet, then mark the corresponding circle below each letter. Do the same for your **FIRST NAME INITIAL**.

5. Print your UIN# in the STUDENT NUMBER designated spaces and mark the corresponding circles. You need not write in or mark the circles in the SECTION box.

6. Sign your name (**DO NOT PRINT**) on the **STUDENT SIGNATURE** *line*.

7. On the **SECTION** *line*, print your **DISCUSSION SECTION**. You need not fill in the COURSE or INSTRUCTOR lines.

Before starting work, check to make sure that your test booklet is complete. You should have 9 **numbered pages** plus three (3) Formula Sheets following these instructions.

Academic Integrity—Giving assistance to or receiving assistance from another student or using unauthorized materials during a University Examination can be grounds for disciplinary action, up to and including dismissal from the University. This Exam Booklet is Version A. Mark the A circle in the TEST FORM box near the middle of your answer sheet. DO THIS NOW!

Exam Grading Policy—

The exam is worth a total of **99** points, composed of three types of questions.

MC5: *multiple-choice-five-answer questions, each worth 6 points.* Partial credit will be granted as follows.

(a) If you mark only one answer and it is the correct answer, you earn 6 points.
(b) If you mark *two* answers, one of which is the correct answer, you earn 3 points.
(c) If you mark *three* answers, one of which is the correct answer, you earn 2 points.
(d) If you mark no answers, or more than *three*, you earn 0 points.

MC3: *multiple-choice-three-answer questions, each worth 3 points.* No partial credit.

(a) If you mark only one answer and it is the correct answer, you earn 3 points.
(b) If you mark a wrong answer or no answers, you earn 0 points.

MC2: *multiple-choice-two-answer questions, each worth 2 points.* No partial credit.

(a) If you mark only one answer and it is the correct answer, you earn 2 points.
(b) If you mark the wrong answer or neither answer, you earn 0 points.

Some helpful information:

• A reminder about prefixes: p (pico) = 10^{-12} ; n (nano) = 10^{-9} ; μ (micro) = 10^{-6} ; m (milli) = 10^{-3} ; k (kilo) = 10^{+3} ; M or Meg (mega) = 10^{+6} ; G or Gig (giga) = 10^{+9} .

A positive and a negative charge have mass 0.4 kg and are fixed in position along the x-axis separated by a distance d=0.2 m as shown in below.

1) If charge Q2 is released from rest, how fast will it be moving when it is a distance d/4 from charge Q1?

- a. 11 m/s
- b. 12.3 m/s
- c. 5.5 m/s
- d. 9.53 m/s
- e. 0 m/s

2) In which region(s) is there a point on the x-axis where the electric field due to the two charges is zero?

- a. Region A only
- b. Region A and B.
- c. Region B only.

3) In which region(s) is there a point on the x-axis where the electric potential due to the two charges is zero?

- a. Region B only.
- b. Region A only.
- c. Regions A and B.

Three charges are fixed in position as shown in below. Note, charges Q1 and Q3 are positive, charge Q2 is negative.

4) What is the x component of the force on charge Q1 due to the other two charges?

a. $F_{1x} = -0.0236$ N b. $F_{1x} = 0.00116$ N c. $F_{1x} = 0.00232$ N d. $F_{1x} = 0.00259$ N e. $F_{1x} = -0.0259$ N

5) What is the y component of the force on charge Q1 due to the other two charges?

- a. $F_{1y} = 0.0233$ N b. $F_{1y} = -0.0233$ N c. $F_{1y} = 0.0224$ N
- d. $F_{1y} = -0.0282$ N
- e. $F_{1y} = 0.0248$ N
- 6) How much work does the **electric field** do,when the charges are brought from infinitely far away, to their location in the figure.
 - a. $W_{\rm E} = -0.0143 \, {\rm J}$
 - b. $W_{\rm E} = -0.0662 \, {\rm J}$
 - c. $W_{\rm E} = 0.0662 \, {\rm J}$
 - d. $W_{\rm E} = 0.0143 \, {\rm J}$
 - e. $W_{\rm E} = 0 \, \mathrm{J}$

The figure below shows the field lines due to two unknown point charges.

7) Compare the magnitude of the two charges.

- a. |Q1| < |Q2|
- b. |Q1| > |Q2|
- c. |Q1| = |Q2|

8) Compare the magnitude of the electric field at points **A** and **B**.

- a. $|E_A| > |E_B|$
- b. $|\mathbf{E}_{\mathbf{A}}| = |\mathbf{E}_{\mathbf{B}}|$
- c. $|E_A| < |E_B|$

Consider the circuit shown below.

9) What is the resistance of resistor R4?

- a. $R_4 = 5 \Omega$
- b. $R_4 = 10 \Omega$
- c. There is no value of R4 for which $I_V = 2$ A.
- d. $R_4 = 20 \ \Omega$
- e. $R_4 = 2 \Omega$

10) Which of the following equations is a valid application of Kirchhoff's current law?

- a. $I_x + I_y = I_z$ b. $I_z = I_w - I_v$
- c. $I_{y} + I_{w} + I_{v} I_{x} = 0$

11) Which of the following equations is **NOT** a valid application of Kirchhoff's voltage law?

a. $\varepsilon_A + \varepsilon_B - I_x R_1 - I_z R_3 = 0$ b. $\varepsilon_B - I_y R_2 - I_z R_3 = 0$ c. $\varepsilon_A - I_x R_1 - I_y R_2 = 0$

Consider the circuit shown below. Initially, both switches are open and the capacitor has been charged to 10 Volts.

At time t=0 switch B is closed (switch A remains open).

- 12) What is the current through resister R₃ just after the switch B is closed?
 - a. $I_3 = 1.5 A.$
 - b. $I_3 = 0.5 A$.
 - c. $I_3 = 2.5 A$.
- 13) Which of the following plots best represents the voltage V₂ across resistor 2 starting just after switch B is closed? (Be careful image is above answer choice)

14) Figure repeated from previous page

Consider the circuit shown below. Initially, both switches are open and the capacitor has been charged to 10 Volts. At time t=0 switch B is closed (switch A remains open).

If it takes 12 μ s for the charge on the capacitor to drop the 1/2 of its initial value, what is the capacitance of the capacitor C?

- a. C = 1631 nF
- b. C = 493 nF
- c. C = 3370 nF
- d. C = 866 nF
- e. C = 215 nF
- 15) After a very long time, switch A is closed. Switch B remains closed. What is the magnitude of the current I1 through resistor R1 immediately after switch A is closed?
 - a. $I_1 = 0.567 \text{ A}$ b. $I_1 = 0.165 \text{ A}$ c. $I_1 = 0.202 \text{ A}$
 - d. $I_1 = 0.446 A$
 - e. $I_1 = 0.930 \text{ A}$

A parallel plate capacitor consists of two metal plates with an area $A = 542 \text{ mm}^2$ separated by a distance d = 0.36 mm. The capacitor is connected to a 9 volt battery as shown above.

16) What is the charge Q on the capacitor?

- a. Q = 0.539 nC
- b. Q = 1.08 nC
- c. $\bar{Q} = 120 nC$
- d. Q = 0.12 nC
- e. $Q = 1.2 \times 10^{-4} nC$
- 17) If the plates are pulled slightly further apart (increasing *d*) the magnitude of the *electric field* between the plates
 - a. decreases.
 - b. remains the same.
 - c. increases.
- 18) If a dialectric of dialectric strength κ is placed between the plates, how will the charge on the capacitor change?
 - a. decrease by a factor of κ .
 - b. *Stay the same*.
 - c. Increase by a factor of κ .

Seven identical capacitors with capacitance C = 8.5 nF are connected to a 12 Volt battery as shown in the figure above.

- 19) Capacitors C₃ and C₆ are connected
 - a. in parallel.
 - b. in series.
 - c. neither in series nor in parallel.
- 20) Compare the magnitude of the voltage across capacitor C_1 with the magnitude of the voltage across capacitor C_7
 - a. $V_1 = V_7$
 - b. $V_1 > V_7$
 - c. $V_1 < V_7$
- 21) What is the equivalent capacitance of the network of seven capacitors?
 - a. $C_{eq} = 9.92 \text{ nF}$
 - b. $C_{eq} = 9.07 \text{ nF}$
 - c. $C_{eq} = 23.8 \text{ nF}$
 - d. $C_{eq} = 3.04 \text{ nF}$
 - e. $C_{eq} = 1.21 \text{ nF}$
- 22) What is the voltage across capacitor C_2 ?
 - a. $V_2 = 3.4$ Volts
 - b. $V_2 = 4$ Volts
 - c. $V_2 = 0.85$ Volts

A student decides to build some resistors using rectangular blocks of calcium ($\rho = 3.36 \times 10^{-8} \Omega$ m) and tungsten ($\rho = 5.6 \times 10^{-8} \Omega$ m). The dimensions of the blocks are identical with a length L = 0.12 m, and cross section A = 2.25×10^{-4} m². Resistor 1 is created from a single block of calcium. Resistor 2 is created by attaching a block of calcium to a block of tungston as shown in the figure above.

23) Compare the resistance of the two resistors.

- a. $R_1 = R_2$ b. $R_1 > R_2$
- c. $R_1 < R_2$

24) What is the resistance of resistor 2?

a. $R_2 = 1.12 \times 10^{-5} \Omega$ b. $R_2 = 4.78 \times 10^{-5} \Omega$ c. $R_2 = 2.39 \times 10^{-5} \Omega$

Mechanics:

$$x = x_0 + v_0 t + \frac{1}{2}at^2 \qquad v = v_0 + at \qquad F = ma \qquad a_c = \frac{v^2}{r}$$
$$E_{tot} = K.E. + P.E. \qquad K.E. = \frac{1}{2}mv^2 = \frac{p^2}{2m} \qquad p = mv \qquad W_F = Fd\cos\theta$$

Electrostatics:

$$F_{12} = \frac{kq_1q_2}{r^2} \qquad E \equiv \frac{F}{q_0} \qquad V \equiv \frac{U}{q_0} \qquad \text{Point charge:} \quad E = \frac{kq}{r^2}, \qquad V = \frac{kq}{r}$$
$$U_{12} = \frac{kq_1q_2}{r} \qquad W_E = -\Delta U = -W_{you}$$

Capacitance:

$$C = \frac{Q}{V}$$
Parallel plate capacitor: $C = \frac{\kappa \varepsilon_0 A}{d}, V = Ed$

$$U_C = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$$

$$C_P = C_1 + C_2 + \cdots$$

$$\frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$$

Resistance:

$$R = \frac{V}{I} \qquad I = \frac{\Delta q}{\Delta t} \qquad Physical resistance: R = \rho \frac{L}{A}$$

$$P = IV = I^2 R = \frac{V^2}{R} \qquad R_S = R_1 + R_2 + \cdots \qquad \frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

<u>Circuits:</u>

$$\sum \Delta V = 0 \qquad \sum I_{in} = \sum I_{out}$$

$$q(t) = q_{\infty}(1 - e^{-t/\tau}) \qquad q(t) = q_0 e^{-t/\tau} \qquad I(t) = I_0 e^{-t/\tau} \qquad \tau = RC$$

Magnetism:

$F = qvB\sin\theta$	$r = \frac{mv}{qB}$	$F = ILB\sin\theta$	$\tau = NIAB \sin \varphi$
$B_{wire} = \frac{\mu_0 I}{2\pi r}$	$B_{sol} = \mu_0 nI$		

Induction and inductance:

$$\varepsilon = -N \frac{\Delta \Phi}{\Delta t} \qquad \Phi = BA \cos \varphi$$

$$\varepsilon_{bar} = BLv \qquad \varepsilon_{gen} = \varepsilon_{max} \sin \omega t = \omega NAB \sin \omega t \qquad \omega = 2\pi f$$

$$L = \frac{N\Phi}{I} \qquad \varepsilon = -L \frac{\Delta I}{\Delta t} \qquad \text{Solenoid inductor: } L = \mu_0 n^2 A \ell \qquad U_L = \frac{1}{2} L I^2$$

AC circuits and transformers:

$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \qquad I_{rms} = \frac{I_{max}}{\sqrt{2}} \qquad \frac{V_p}{V_s} = \frac{I_s}{I_p} = \frac{N_p}{N_s}$$

$$V_R(t) = V_{R,max} \sin(\omega t) = I_{max} R \sin(\omega t) \qquad \omega = 2\pi f$$

$$V_C(t) = V_{C,max} \sin(\omega t - \pi/2) = I_{max} X_C \sin(\omega t - \pi/2) \qquad X_C \equiv \frac{1}{\omega C}$$

$$V_L(t) = V_{L,max} \sin(\omega t + \pi/2) = I_{max} X_L \sin(\omega t + \pi/2) \qquad X_L \equiv \omega L$$

$$V_{gen}(t) = V_{gen,max} \sin(\omega t + \varphi) = I_{max} Z \sin(\omega t + \varphi) \qquad Z \equiv \sqrt{R^2 + (X_L - X_C)^2} \qquad \tan \varphi = \frac{X_L - X_C}{R}$$

$$\overline{P} = I_{rms} V_{R,rms} = I_{rms} V_{gen,rms} \cos \varphi \qquad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Electromagnetic waves:

$$\lambda = \frac{c}{f} \qquad E = cB$$

$$u_E = \frac{1}{2}\varepsilon_0 E^2 \qquad u_B = \frac{1}{2\mu_0} B^2 \qquad \overline{u} = \frac{1}{2}\varepsilon_0 E_{rms}^2 + \frac{1}{2\mu_0} B_{rms}^2 = \varepsilon_0 E_{rms}^2 = \frac{B_{rms}^2}{\mu_0} \qquad S = I = \overline{u}c$$

$$f' = f\left(1 \pm \frac{u}{c}\right) \qquad I = I_0 \cos^2 \theta$$

Reflection and refraction:

$$\theta_r = \theta_i \qquad \qquad \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \qquad \qquad f = \pm \frac{R}{2} \qquad \qquad m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \qquad \qquad v = \frac{c}{n} \qquad \qquad \sin \theta_c = \frac{n_2}{n_1} \qquad \qquad M = \frac{\theta'}{\theta} \approx \frac{d_{near}}{f}$$

Interference and diffraction:

Double slit interference:	$d\sin\theta = m\lambda$	$d\sin\theta = (m+\frac{1}{2})\lambda$	$m=0,\pm 1,\pm 2\ldots$
Single-slit diffraction:	$w\sin\theta = m\lambda$	$m = \pm 1, \pm 2$	
Circular aperture:	$D\sin\theta \approx 1.22\lambda$		
Thin film: $\delta_1 = (0 \text{ or }$	$\frac{1}{2}$ $\delta_2 = (0 \text{ or } \frac{1}{2}) + 2t \frac{n_{film}}{\lambda_0}$	$\left \delta_2 - \delta_1\right = (m \text{ or } m + \frac{1}{2})$	m = 0, 1, 2

Quantum mechanics:

$$E = hf = \frac{hc}{\lambda} \qquad \qquad \lambda = \frac{h}{p}$$

Blackbody radiation: $\lambda_{max}T = 2.898 \times 10^{-3} \, m \cdot K$ Photoelectric effect: $K.E. = hf - W_0$
 $\Delta p_x \Delta x \ge \frac{\hbar}{2} \qquad \qquad \hbar = \frac{h}{2\pi}$

Bohr atom: $2\pi r_n = n\lambda$ n = 1, 2, 3...

 $L_n = mv_n r_n = n\hbar$

Physics 102 Formula Sheet

$$r_{n} = \left(\frac{\hbar^{2}}{mke^{2}}\right) \frac{n^{2}}{Z} \approx (5.29 \times 10^{-11} m) \frac{n^{2}}{Z} \qquad E_{n} = -\left(\frac{mk^{2}e^{4}}{2\hbar^{2}}\right) \frac{Z^{2}}{n^{2}} \approx -(13.6 \, eV) \frac{Z^{2}}{n^{2}} \\ \frac{1}{\lambda} \approx (1.097 \times 10^{7} \, m^{-1}) Z^{2} \left(\frac{1}{n_{f}^{2}} - \frac{1}{n_{i}^{2}}\right) \\ \text{Quantum atom:} \qquad L = \sqrt{\ell(\ell+1)\hbar} \qquad L_{z} = m_{\ell}\hbar$$

Nuclear physics and radioactive decay:

$$A = Z + N \qquad r \approx (1.2 \times 10^{-15} \, m) A^{1/3} \qquad E_0 = mc^2$$

$$\frac{\Delta N}{\Delta t} = -\lambda N \qquad N(t) = N_0 e^{-\lambda t} = N_0 2^{-t/T_{1/2}} \qquad T_{1/2} \equiv \frac{\ln 2}{\lambda} \approx \frac{0.693}{\lambda}$$

Special relativity:

$$\Delta t = \gamma \Delta t_0 \qquad \qquad L = \frac{L_0}{\gamma} \qquad \qquad \gamma \equiv \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

Constants and unit conversions:

$$g = 9.8 m/s^{2} \qquad e = 1.60 \times 10^{-19} C$$

$$\varepsilon_{0} = 8.85 \times 10^{-12} C^{2} / Nm^{2} \qquad k \equiv \frac{1}{4\pi\varepsilon_{0}} = 8.99 \times 10^{9} Nm^{2} / C^{2} \qquad \mu_{0} = 4\pi \times 10^{-7} T \cdot m/A$$

$$c = \frac{1}{\sqrt{\varepsilon_{0}\mu_{0}}} = 3 \times 10^{8} m/s \qquad h = 6.626 \times 10^{-34} J \cdot s \qquad hc = 1240 nm \cdot eV$$

$$1 eV = 1.60 \times 10^{-19} J \qquad m_{proton} = 1.67 \times 10^{-27} kg = 938 MeV \qquad m_{electron} = 9.11 \times 10^{-31} kg = 511 keV$$

SI Prefixes				
Power	Prefix	Symbol		
10 ⁹	giga	G		
106	mega	М		
10^{3}	kilo	k		
10^{0}				
10 ⁻³	milli	m		
10 ⁻⁶	micro	μ		
10 ⁻⁹	nano	n		
10 ⁻¹²	pico	р		

Physics 102 Exam 1 --Spring 2014

1. d 2. a

- 3. c
- 4. c
- 5. e
- 6. c
- 7. b
- 8. c
- 9. b 10. c
- 11. b
- 12. b
- 13. a
- 14. d
- 15. a
- 16. cd
- 17. a
- 18. c
- 19. b 20. a
- 21. d
- 22. a
- 23. b
- 24. a