Physics 102: Lecture 11

Generators and Transformers

Exam 1 results

- Raw mean $=68 \%$ Scaled mean $=75 \%$
- Concerned? Diagnose the issue
- Physics understanding?
- Test taking?
- Make a plan
- Different approach to studying, lectures, etc
- Contact me: ychemla@illinois.edu
- Remember
- Midterm worth 10\% of final grade
- You CAN make up for a poor midterm grade

Review: Magnetic Flux \& Induction

> B Flux: $\Phi=\mathrm{B} \mathrm{A} \cos (\phi)$ ϕ is angle between normal and B Induced voltage: $\varepsilon=-\frac{\Delta \Phi}{\Delta t}=-\frac{\Phi_{\mathrm{f}}-\Phi_{\mathrm{i}}}{t_{f}-t_{i}}$ 3 things can change Φ : Lenz's Law Last 1. Area of loop lecture 2. Magnetic field B Today

Lenz's Law

Induced emf opposes change in flux

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXX
XXXXX KXXXX $\times X X X$
XXXXXXXBY $<x$ $\mathrm{XXXX} \times \mathrm{XX}$.
XXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

- If flux increases:

New EMF makes new field opposite to original field rurzIf flux decreases:

New EMF makes new field in same direction as original field

Generators and EMF

A loop of wire is rotated (ex: by a steam engine turbine) in a uniform B field

normal

$$
\Phi=\mathrm{B} \mathrm{~A} \cos (\phi)
$$

Loop normal rotates relative to B field
=> ϕ changes => Φ changes => emf in loop
=> voltage generated!
Physics 102: Lecture 11, Slide 5

Review (Phys 101): Rotation Variables v, $\omega, f, \mathrm{~T}$

- Velocity (v):
- How fast a point moves.
- Units: usually m/s
- Angular Frequency (ω):

- How fast something rotates.
- Units: radians / sec
$\omega=\mathrm{v} / \mathrm{r}$
- Frequency (f):
- How fast something rotates.
- Units: rotations / sec = Hz

$$
f=\omega / 2 \pi
$$

- Period (T):
- How much time one full rotation takes.
- Units: usually seconds

$$
\mathrm{T}=1 / f=2 \pi / \omega
$$

Generator: flux

$$
\begin{aligned}
& t=0, \Phi=A B \text { (max) } \\
& t>0, \Phi<A B \\
& t=T / 4, \Phi=0 \\
& t>T / 4, \Phi<0 \\
& t=T / 2, \Phi=-A B \text { (min) }
\end{aligned}
$$

Answers to Checkpoints 1.1-1.3 follow...

$$
\Phi=\mathrm{B} \mathrm{~A} \cos (\phi)=\mathrm{B} \mathrm{~A} \cos (\omega \mathrm{t})
$$

Generator: EMF

$$
\varepsilon=-\frac{\Delta \Phi}{\Delta t}
$$

$$
\Phi=\mathrm{B} A \cos (\omega t)
$$

$\varepsilon=\omega B A \sin (\omega t)$

Comparison: Flux vs. EMF

Physics 102: Lecture 11, Slide 9

Flux is maximum

- Most lines thru loop

EMF is minimum

- Just before: lines enter from left
- Just after: lines enter from left
- No change!

Flux is minimum

- Zero lines thru loop

EMF is maximum

- Just before: lines enter from top.
- Just after: lines enter from bottom.
- Big change!

ACT: Generators and EMF

 $\varepsilon=\omega A B \sin (\phi)$

At which time does the loop have the greatest|emf| (greatest $\Delta \Phi / \Delta t$)?
A) Has greatest flux, but $\phi=0$ so $\varepsilon=0$.
B) Intermediate flux, $\phi \approx 30$ so $\varepsilon \approx \omega A B / 2$.
C) Flux is zero, but $\phi=90$ so $\varepsilon=\omega A B$.

ACT: EMF direction

In which direction does the current flow in wire a-b at the moment shown? i) $\Phi \downarrow$ 2) Bind along Bext 3) RHR2

Side view

$$
\text { A) } \pi \quad \text { B) } E M F=0
$$

Φ decreasing => $\mathrm{B}_{\text {ind }}$ along external $\mathrm{B}=>$ current CCW (RHR2)

Generators and Torque

Connect loop to resistance R use $\mathrm{I}=\mathrm{V} / \mathrm{R}$:
$\mathrm{I}=\omega \mathrm{AB} \sin (\phi) / \mathrm{R}$
Recall:

$$
\begin{aligned}
\tau & =\text { A B I } \sin (\phi) \\
& =\omega \mathrm{A}^{2} \mathrm{~B}^{2} \sin ^{2}(\phi) / \mathrm{R}
\end{aligned}
$$

Direction: use RHR1
Torque, due to current and B field, tries to slow spinning loop down. Must supply external torque to keep it spinning at constant ω

Generator

A generator consists of a square coil of wire with 40 turns. each side is 0.2 meters long, and it is spinning with angułar velocity $\omega=2.5$ radians/second in a uniform magnetie field $\mathrm{B}=0.15 \mathrm{~T}$. Calculate the maximum EIVF and torque if the resistive load is 4Ω.
$\varepsilon=$ © B $\omega \sin (\phi)$
$=(40)(0.2)^{2}(0.15)(2.5)$
$=0.6$ Volts
$\tau=(1) A B \sin (\phi)$
$=N^{2} \omega A^{2} B^{2} \sin ^{2}(\phi) / R$
$=(40)^{2}(2.5)(0.2)^{4}(0.15)^{2 / 4}$
$=0.036$ Newton-meters

Note: Emf is maximum at $\phi=90$
Note: Torque is maximum at $\phi=90$

In a hydropower plant, that torque is supplied by falling water.

The power plant delivers AC (alternating current) power to your house: the voltage and current switch directions at $\mathrm{f}=60 \mathrm{~Hz}$ (more next lecture). At your house: 120 V .

There is a big challenge getting electric current to your house: $P=I^{2} R$!

Power Transmission, CheckPoint 2.1

A generator produces 1.2 Giga watts of power, which it transmits to a town 7 miles away through power lines with a total resistance 0.01_{1}^{m} ohms. How much power is lost in the lines if the energy is transmitted at 120 Volts?

> | $P=$ IV Power delivered by generator through lines |
| :--- |
| $I=P / V=1.2 \times 10^{\circ} \mathrm{W} / 120 \mathrm{~V}=10,000,000$ Amps in lines! |
| $P=I^{12} R$ Power lost in lines |

$=10,000,000^{2}(.01)=1.0$ Giga Watt Lost in Lines!
Large current is the problem. Since P=IV, use high voltage and low current to deliver power.
If $\mathrm{V}=12,000$ Volts, lose 0.0001 Giga Watts!

Transformers make it possible to distribute electrical power at high voltage and "step-down" to low voltage at your house.

Transformers

- Key to Modern electrical system
- Transform between high and low voltages
- Very efficient

Nikola Tesla

Transformers

Key to efficient power distribution

Changing current in "primary" creates changing flux in primary and "secondary".
$V_{p}=-N_{p} \frac{\Delta \Phi}{\Delta \mathrm{t}} \begin{gathered}\text { Flux through } \\ \text { one loop } \\ \text { Same } \Delta \Phi / \Delta \mathrm{t}\end{gathered}$
$V_{s}=-N_{s} \frac{\Delta \Phi}{\Delta t}$

N_{p}
$\begin{array}{lll}\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}} & N_{s}>N_{\boldsymbol{p}}: V_{s}>\boldsymbol{V}_{\boldsymbol{p}} \text { "step up" (primary) } & N_{s}<N_{\boldsymbol{p}}: V_{s}<V_{\boldsymbol{p}}\end{array}$ (secondary)

CheckPoint 3.1

The good news is you are going on a trip to France. The bad news is that in France the outlets have 240 volts. You remember from P102 that you need a transformer, so you wrap 100 turns around the primary. How many turns should you wrap around the secondary if you need 120 volts out to run your hair dryer? iron

57\%
2) 100

19\%

$$
\frac{V_{s}}{V_{p}}=\frac{N_{s}}{N_{p}}
$$

By halving the number of turns around the secondary you decrease the voltage in the secondary by half.
3) 200 25\%

$$
N_{s}=N_{p}\left(\frac{V_{s}}{V_{p}}\right)=100\left(\frac{120}{240}\right)=50
$$

$$
N_{P}=100
$$

(primary)

ACT: Transformers

Transformers depend on a

 change in flux so they only work for alternating currents! $A C$A 12 Volt battery is connected to a transformer transformer that has a 100 turn primary coil, and 200 turn

(primary) (secondary) secondary coil. What is the voltage across the secondary after the battery has been connected for a long time?
A) $V_{s}=0$
B) $V_{s}=6$
C) $V_{s}=12$
D) $V_{s}=24$

Questions to Think About

- In a transformer the side with the most turns always has the larger peak voltage. (T/F)

True

- In a transformer the side with the most turns always has the larger peak current. (T/F)

False (has smaller current)

- In a transformer the side with the most turns always dissipates the most power. (T/F)

False (equal)

- Which of the following changes will increase the peak voltage delivered by a generator
- Increase the speed it is spinning.
- Increase the area of the loop.

All of them will!

- Increase the strength of the magnetic field.

