Today we will …

• get some practice using Coulomb’s Law
• learn the concept of an Electric Field
Recall Coulomb’s Law

Force between charges \(q_1 \) and \(q_2 \) separated distance \(r \):

\[
F = k \frac{|q_1| |q_2|}{r^2}
\]

“Coulomb constant”
\[
k = 9 \times 10^9 Nm^2/C^2
\]

Opposite charges attract, like charges repel
Coulomb Law practice: Three Charges

- Calculate force on +2μC charge due to other two charges
 - Draw forces
 - Calculate force from +7μC charge
 - Calculate force from −7μC charge
 - Add (VECTORS!)
Three Charges – Calculate forces

- Calculate force on +2μC charge due to other two charges
 - Draw forces
 - Calculate force from +7μC charge
 - Calculate force from −7μC charge
 - Add (VECTORS!)
- Calculate magnitudes \(F = k \frac{q_1 q_2}{r^2} \)
 - Always \(\geq 0 \)

\[F_{+7} = 9 \times 10^9 \left| \frac{2 \times 10^{-6} \cdot 7 \times 10^{-6}}{5^2} \right| \]

\[F_{-7} = 9 \times 10^9 \left| \frac{2 \times 10^{-6} \cdot (-7 \times 10^{-6})}{5^2} \right| \]

\[= 5 \times 10^{-3} N \]
Three charges – Adding Vectors $\vec{F}_{+7} + \vec{F}_{-7}$

- Calculate components of vectors \vec{F}_{+7} and \vec{F}_{-7}:

$$\vec{F}_{+7,x} = F_{+7} \cos \theta = 5 \times 10^{-3} N \frac{3}{5}$$
$$\quad = 3 \times 10^{-3} N$$

$$\vec{F}_{+7,y} = F_{+7} \sin \theta = 5 \times 10^{-3} N \frac{4}{5}$$
$$\quad = 4 \times 10^{-3} N$$

$$\vec{F}_{-7,x} = F_{-7} \cos \theta = 5 \times 10^{-3} N \frac{3}{5}$$

$$\vec{F}_{-7,y} = -F_{-7} \sin \theta = -5 \times 10^{-3} N \frac{4}{5}$$

Watch Signs!
Three charges – Adding Vectors $\mathbf{F}_{+7} + \mathbf{F}_{-7}$

- Add like components of vectors \mathbf{F}_{+7} and \mathbf{F}_{-7}:

 \[
 F_x = F_{+7,x} + F_{-7,x} = 6 \times 10^{-3} N \\
 F_y = F_{+7,y} + F_{-7,y} = 0
 \]

- Final vector \mathbf{F} has magnitude and direction

 \[
 F = \sqrt{F_x^2 + F_y^2} = 6 \times 10^{-3} N \\
 \phi = \tan^{-1} \left(\frac{F_y}{F_x} \right) = 0
 \]

- Double-check with drawing
Electric Field

- Charged particles create electric fields.
 - Direction is the same as for the force that a + charge would feel at that location.
 - Magnitude given by:
 \[E \equiv \frac{F}{q} = \frac{kq}{r^2} \]

Example

\[Q_p = 1.6 \times 10^{-19} \text{ C} \]

\[r = 1 \times 10^{-10} \text{ m} \]

\[E = \frac{9 \times 10^9 \cdot 1.6 \times 10^{-19}}{(10^{-10})^2} \text{ N} = 1.4 \times 10^{11} \text{ N/C} \text{ (to the right)} \]
CheckPoint 2.1

What is the direction of the electric field at point A?

- 1) Up (7%)
- 2) Down (7%)
- 3) Left (2%)
- 4) Right (53%)
- 5) Zero (32%)
ACT: E Field

What is the direction of the electric field at point C?

A. Left
 Away from positive charge (right)

B. Right
 Towards negative charge (right)
 Net E field is to right.

C. Zero

Physics 102: Lecture 2, Slide 9
E Field from 2 Charges

- Calculate electric field at point A due to two unequal charges
 - Draw electric fields
 - Calculate E from $+7\mu C$ charge
 - Calculate E from $-3.5\mu C$ charge
 - Add (VECTORS!)

Note: this is similar to (but a bit harder than) my earlier example.

We’ll do some of this here… you try the rest at home!
E Field from 2 Charges

- Calculate electric field at point A due to charges
 - Calculate E from +7μC charge
 - Calculate E from −3.5μC charge
 - Add*

\[E = \frac{kq}{r^2} \]

\[E_7 = \frac{(9 \times 10^9)(7 \times 10^{-6})}{25} \text{ N/C} \]

\[E_7 = 2.5 \times 10^{+3} \text{ N/C} \]

\[E_3 = \frac{(9 \times 10^9)(3.5 \times 10^{-6})}{25} \text{ N/C} \]

\[E_3 = 1.25 \times 10^{+3} \text{ N/C} \]

Physics 102: Lecture 2, Slide 11
Adding Vectors $E_7 + E_3$

- Decompose into x and y components.

\[
E_{7x} = E_7 \cos(\theta) = E_7 \left(\frac{3}{5} \right) \\
= 1.5 \times 10^3 \text{N/C}
\]

\[
E_{7y} = E_7 \sin(\theta) = E_7 \left(\frac{4}{5} \right) \\
= 2 \times 10^3 \text{N/C}
\]
Adding Vectors \(\mathbf{E}_7 + \mathbf{E}_3 \)

- Decompose into x and y components.
- Add components.

\[
\begin{align*}
E_{7x} &= 1.5 \times 10^3 \text{ N/C} \\
E_{3x} &= 0.75 \times 10^3 \text{ N/C} \\
E_{7y} &= 2 \times 10^3 \text{ N/C} \\
E_{3y} &= -1 \times 10^3 \text{ N/C}
\end{align*}
\]

\[
\begin{align*}
E_x &= 2.25 \times 10^3 \text{ N/C} \\
E_y &= 1.0 \times 10^3 \text{ N/C}
\end{align*}
\]

\[
|\mathbf{E}| = \sqrt{E_x^2 + E_y^2} = 2.5 \times 10^3 \text{ N/C}
\]
Comparison: Electric Force vs. Electric Field

- **Electric Force** (F) – the force felt by a charge at some location
- **Electric Field** (E) – found for a location only (any location) – tells what the electric force *would be* if a $+$ charge were located there:
 \[F = Eq \]
- Both are vectors, with magnitude and direction.

Ok, what is E actually good for?
Electric Field Map

• Electric field defined at any location
Electric fields:
A useful record-keeping tool!

Calculate once for fixed charges, use to find force on other charges (like ions/electrons in neurons, heart tissue, and cell membranes)

Eisenberg, BU
Electric Field Lines

- Closeness of lines shows field strength (lines never cross)
- Number of lines at surface $\propto Q$
- Arrow gives direction of E (Start on +, end on –)

This is becoming a mess!!!
Charge A is positive.

Field lines start on positive charge, end on negative.

1) positive 93%
2) negative 4%
3) unknown 3%

Physics 102: Lecture 2, Slide 18
CheckPoint 3.2 / ACT

Compare the ratio of charges Q_A / Q_B # lines proportional to Q

A) $Q_A = 0.5Q_B$
B) $Q_A = Q_B$
C) $Q_A = 2Q_B$

15%
17%
53%
The electric field is stronger when the lines are located closer to one another.

The magnitude of the electric field at point X is greater than at point Y

1) True 18% 2) False 82% Density of field lines gives E
E inside of conductor

- Conductor \equiv electrons free to move
 - Electrons feels electric force - will move until they feel no more force ($F=0$)
 - $F=Eq$: if $F=0$ then $E=0$

- $E=0$ inside a conductor (Always!)
Demo: E-field from dipole
Recap

• **E Field has magnitude and direction:**
 – \(E \equiv F/q \)
 – Calculate just like Coulomb’s law
 – Careful when adding vectors

• **Electric Field Lines**
 – Density gives strength (# proportional to charge.)
 – Arrow gives direction (Start + end on –)

• **Conductors**
 – Electrons free to move \(\Rightarrow E = 0 \)
To Do

• Campus closed on Monday; no office hours.
• Homework 1 due **Wednesday, Jan 23 @ 8 AM**!
• Do your Checkpoint by 8:00 AM Wednesday.