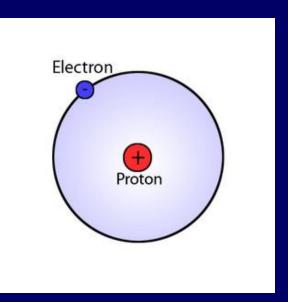
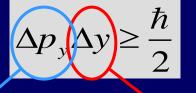
Physics 102: Lecture 24

Heisenberg Uncertainty Principle & Bohr Model of Atom



Heisenberg Uncertainty Principle Recall: Quantum Mechanics tells us outcomes of individual measurements are uncertain

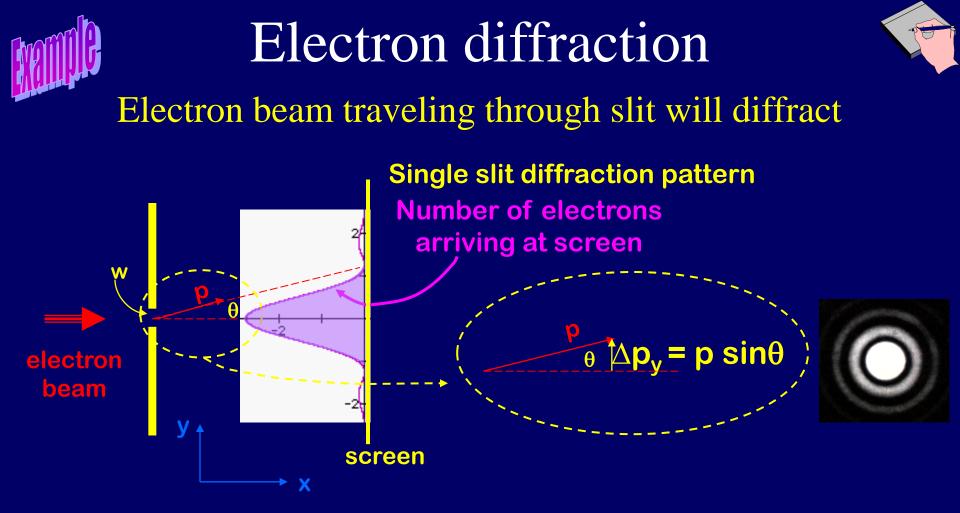


$$\hbar = h/2 \pi$$

Uncertainty in momentum (along y) Uncertainty in position (along y)

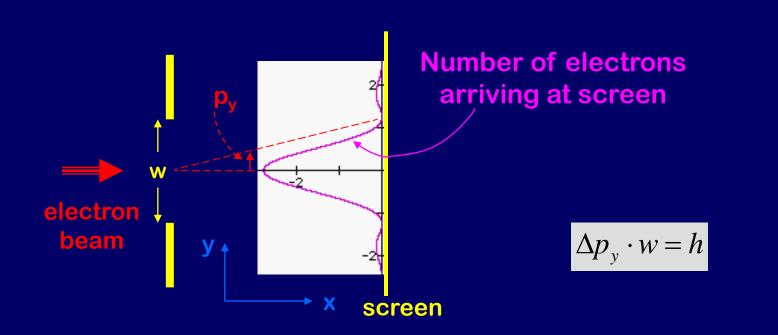
Rough idea: if we know momentum very precisely, we lose knowledge of location, and vice versa.

This "uncertainty" is fundamental: it arises because quantum particles behave like waves!



Recall single-slit diffraction 1st minimum: $sin\theta = \lambda/w \quad w = \lambda/sin\theta = \Delta y$

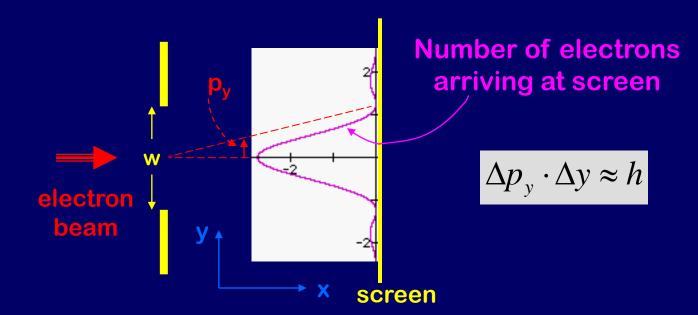
$$\Delta p_{y} \Delta y = p \sin \theta \frac{\lambda}{\sin \theta} = \lambda p = h \quad \text{Using de Broglie } \lambda$$



Electron entered slit with momentum along x direction and no momentum in the y direction. When it is diffracted it acquires a p_y which can be as big as h/w.

The "Uncertainty in p_y " is $\Delta p_y \approx h/w$. An electron passed through the slit somewhere along the y direction. The "Uncertainty in y" is $\Delta y \approx w$.

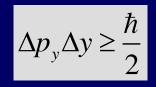
$$\Delta p_{y} \cdot \Delta y \approx h$$



If we make the slit narrower (decrease w = Δ y) the diffraction peak gets broader (Δ p_v increases).

 $\Delta p_y \approx h/\Delta y$

"If we know location very precisely, we lose knowledge of momentum, and vice versa."



Of course if we try to locate the position of the particle along the x axis to Δx we will not know its x component of momentum better than Δp_x , where

$$\Delta p_x \Delta x \ge \frac{\hbar}{2}$$

and the same for z.

Checkpoint 1

According to the H.U.P., if we know the x-position of a particle, we cannot know its:(1)y-position(2)x-momentum(3)y-momentum(4)Energy

Atoms

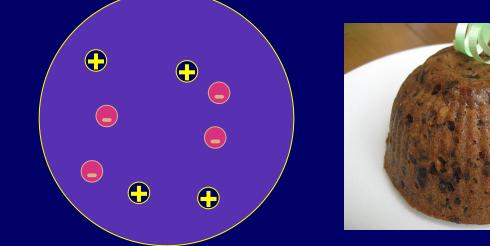
- Evidence for the nuclear atomBohr model of the atom
- Spectroscopy of atoms
- Quantum atom \bullet

Next lecture

Early Model for Atom

Plum Pudding

 positive and negative charges uniformly distributed throughout the atom like plums in pudding



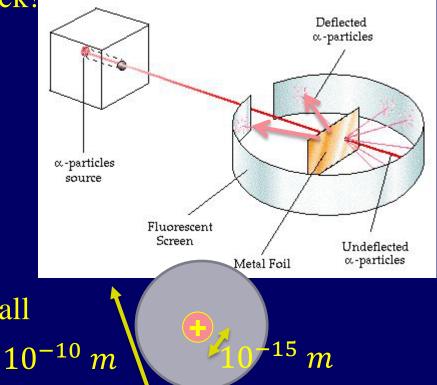
But how can you look inside an atom 10⁻¹⁰ m across?Light (visible) $\lambda = 10^{-7}$ mElectron (1 eV) $\lambda = 10^{-9}$ mHelium atom $\lambda =$

Rutherford Scattering

1911: Scattering He⁺⁺ (an "alpha particle") atoms off of gold. Mostly go through, some scattered back!

Plum pudding theory: + and – charges uniformly distributed → electric field felt by alpha never gets too large

To scatter at large angles, need positive charge concentrated in small region (the nucleus) 10

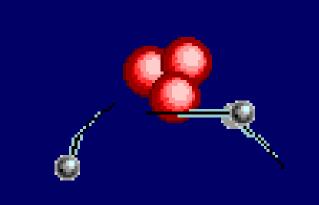


Atom is mostly empty space with a small $(r = 10^{-15} \text{ m})$ positively charged nucleus surrounded by "cloud" of electrons $(r = 10^{-10} \text{ m})$

Nuclear Atom (Rutherford)

Large angle scattering Nuclear atom





Classic nuclear atom is not stable! Electrons will radiate and spiral into nucleus Early "quantum" model: Bohr

Bohr Model is Science fiction

The Bohr model is complete nonsense.

- Electrons do not circle the nucleus in little planetlike orbits.
- The assumptions injected into the Bohr model have no basis in physical reality.
- BUT the model does get some of the numbers right for SIMPLE atoms...

Hydrogen-Like Atoms

single electron with charge -e

nucleus with charge +Ze (Z protons)

$$e = 1.6 \times 10^{-19} C$$

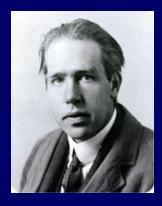
Ex: H (Z=1), He⁺ (Z=2), Li⁺⁺ (Z=3), etc

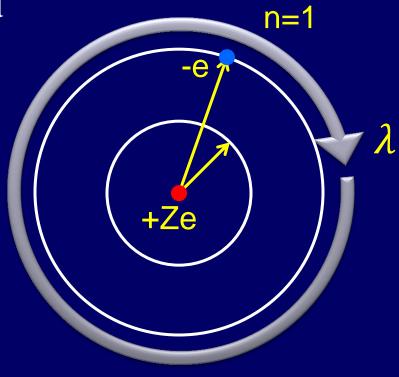
The Bohr Model

Electrons circle the nucleus in orbits

Only certain orbits are allowed

 $2\pi r = n\lambda$ = nh/p





 $n = 1,2,3 \dots$

The Bohr Model

Electrons circle the nucleus in orbits

Only certain orbits are allowed

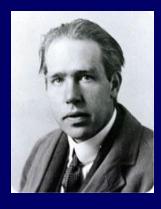
 $2\pi r = n\lambda$ = nh/p

 $L = pr = n\hbar/2\pi = n\hbar$

Angular momentum is quantized

Energy is quantized: $E = -13.6 \ eV \ Z^2 / n^2$ $n = 1,2,3 \dots$

v is also quantized in the Bohr model!



n=2

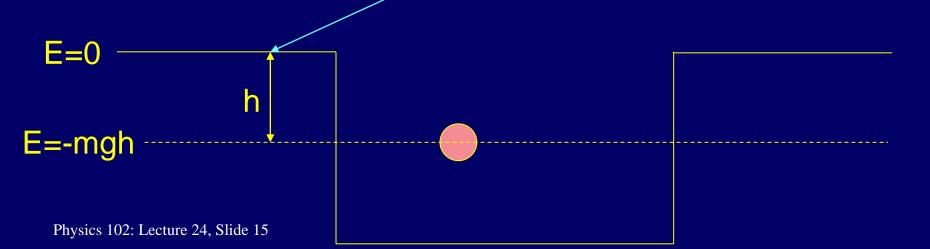
 2λ

-e

+Ze

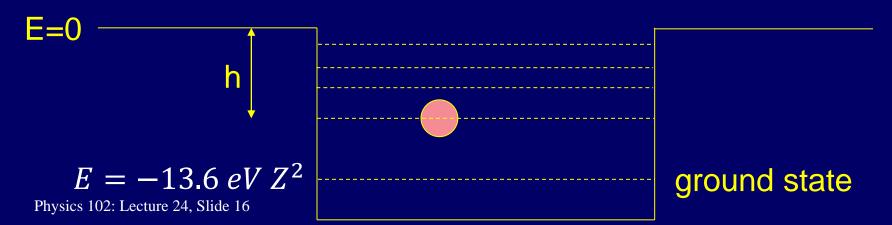
An analogy: Particle in Hole

- The particle is trapped in the hole
- To free the particle, need to provide energy mgh
- Relative to the surface, energy = -mgh
 a particle that is "just free" has 0 energy



An analogy: Particle in Hole

- Quantized: only fixed discrete heights of particle allowed
- Lowest energy (deepest hole) state is called the "ground state"



Some (more) numerology

- 1 eV = kinetic energy of an electron that has been accelerated through a potential difference of 1 V 1 eV = $q\Delta V = 1.6 \times 10^{-19} \text{ J}$
- h (Planck's constant) = $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$ hc = 1240 eV·nm
- $m = mass of electron = 9.1 \times 10^{-31} kg$ $mc^2 = 511,000 eV$
- U = ke²/r, so ke² has units eV·nm (like hc) 2πke²/(hc) = 1/137 (dimensionless)
 "fine structure constant"

For Hydrogen-like atoms:

Energy levels (relative to a "just free" E=0 electron):

$$E_n = -\frac{mk^2 e^4}{2\hbar^2} \frac{Z^2}{n^2} \approx -\frac{13.6 \cdot Z^2}{n^2} \text{ eV (where } \hbar \equiv h/2\pi)$$

Radius of orbit:

$$r_n = \left(\frac{h}{2\pi}\right)^2 \frac{1}{mke^2} \frac{n^2}{Z} = (0.0529 \text{ nm})\frac{n^2}{Z}$$

Checkpoint 2

- If the electron in the hydrogen atom was 207 times heavier (a muon), the Bohr radius would be
- 1) 207 Times Larger
- 2) Same Size
- 3) 207 Times Smaller

ACT/Checkpoint 3

A single electron is orbiting around a nucleus with charge +3. What is its ground state (n=1) energy? (Recall for charge +1, E= -13.6 eV)

1)
$$E = 9 (-13.6 \text{ eV})$$

2)
$$E = 3 (-13.6 \text{ eV})$$

3) E = 1 (-13.6 eV)

ACT: What about the radius?

Z=3, n=1

- 1. larger than H atom
- 2. same as H atom
- 3. smaller than H atom

Summary

- Bohr's Model gives accurate values for electron energy levels...
- But Quantum Mechanics is needed to describe electrons in atom.
- Next time: electrons jump between states by emitting or absorbing photons of the appropriate energy.