

# Phys 102 – Lecture 3

The Electric field

#### Today we will...

- Learn about the *electric field*
- Apply the superposition principle

Ex: Dipole, line of charges, plane of charges

- Represent the E field using electric field lines
- Apply these concepts!

Dipoles in electric fields

Conductors in electric fields

## The electric field

The electric field is defined at a *location* in space around a charge or set of charges



Magnitude given by: 
$$E = \frac{F}{|q|}$$

Units: N/C

**Direction** 

Direction is the same as for the force that a + charge would feel at that location

#### Calculation: Electric field in H atom

What is the magnitude of the electric field due to the proton at the *position* of the electron?



What is the direction?

## Electric field from + and - charges

Magnitude 
$$E = \frac{k|q|}{r^2}$$

onection Away from + charge, toward – charge





#### Superposition principle

Total E-field due to several charges = sum of individual E-fields

$$\vec{E}_{tot} = \sum \vec{E}$$

Ex: what is the E-field at point P due to  $q_1$ ,  $q_2$ , and  $q_3$ ?



Same approach as for force

$$\vec{\boldsymbol{E}}_{tot} = \vec{\boldsymbol{E}}_1 + \vec{\boldsymbol{E}}_2 + \vec{\boldsymbol{E}}_3$$

#### CheckPoint 1.1

Two equal, but opposite charges are placed on the x-axis at x = -5 and x = +5. What is the direction of the electric field at point A on the y-axis?



- A. Up
- B. Down
- C. Left
- D. Right
- E. Zero



#### ACT: CheckPoint 1.2

What is the direction of the electric field at point *B*?

#### **Other locations?**



- A. Left
- B. Right
- C. Zero



#### ACT: Line of charge

Consider a very long line of negative charges (ex: DNA). What is the direction of electric field at point *P*?



•

- A. Up
- B. Down
- C. Left
- D. Right
- E. Zero

#### Plane of charge

A large plane of charges creates a *uniform* electric field (constant magnitude, direction)







#### ACT: two charged planes

Consider two large parallel planes with equal and opposite charge +Q and -Q separated by a small distance

If the electric field from one plane is  $E_{plane}$ , what is the magnitude of total electric field at position P above the two parallel planes?



#### Calculation: Electron microscope

A uniform E field generated by parallel plates accelerates electrons in an electron microscope. If an electron starts from rest at the top plate what is its final velocity?



## Electric field lines for charges

Electric field lines represent E field direction and magnitude graphically



## Electric field lines for dipoles



#### CheckPoint 2.1



Charge A is

A. positive B. negative C. unknown



#### ACT: CheckPoint 2.2



Compare the charges  $Q_A \& Q_B$ 

A. 
$$Q_A = Q_B/2$$
 B.  $Q_A = Q_B$ 

B. 
$$Q_A = Q_B$$

C. 
$$Q_A = 2Q_B$$



#### ACT: CheckPoint 2.4



The magnitude of the electric field at point X is greater than at point Y

A. True

B. False

#### ACT: Electric field lines

Which of the following pictures best represents the electric field from two charges that have the *same* sign but different magnitudes?



## Calculation: dipole in E-field

An electric dipole with moment  $p = 6.2 \times 10^{-30} \text{ C} \cdot \text{m}$  is placed in a uniform external electric field  $E = 10^6 \text{ N/C}$  at an angle  $\theta = 60^\circ$ . Calculate the total *force* and *torque* on the dipole.



#### Dipole in E field

Electric dipole moments align parallel to electric field



Phys. 102, Lecture 3, Slide 20

#### Conductors & electric fields

Imagine placing a conductor inside a uniform external E field



#### Conductors & electric fields

Imagine placing a conductor inside a uniform external E field

Another way to look at it:





#### ACT: Conductor & E field

Which diagram best represents the *E* field around a positively charged conducting spherical shell?



### Summary of today's lecture

• Electric fields

Electric field lines

• Superposition principle  $\vec{E}_{tot} = \sum \vec{E}$ 

Dipole, line, plane

- Dipoles & electric fields
- ullet Conductors & electric fields  $ec{m{E}}_{cond.} = 0$