

Phys 102 - Lecture 17

Introduction to ray optics

Physics 102 lectures on light

Light as a wave

- Lecture 15 - EM waves
- Lecture 16 - Polarization
- Lecture 22 \& 23 - Interference \& diffraction

Light as a ray

- Lecture 17 - Introduction to ray optics
- Lecture 18 - Spherical mirrors
- Lecture 19 - Refraction \& lenses
- Lecture 20 \& 21 - Your eye \& optical instruments

Light as a particle

- Lecture 24 \& 25 - Quantum mechanics

Today we will...

- Introduce several key concepts

Huygens' principle
Ray model of light

- Learn about interaction of light with matter

Law of reflection - how light bounces
Snell's law of refraction - how light bends

- Learn applications

How we see objects
How we see images from reflection \& refraction

Recall wavefronts

Wavefronts represent surfaces at crests of EM wave, \perp to direction of propagation

Huygens' Principle

Every point on a wavefront acts as a source of tiny spherical "wavelets" that spread outward

Light represented as "rays" along direction of propagation
The shape of the wavefront at a later time is tangent to all the wavelets

Light rays

Rays represent direction of propagation of EM wave
Rays travel in a straight line inside transparent medium until they interact with different material

Three ways light rays interact with matter:

Absorption
Reflection
Refraction
Usually, a bit of all three

This model of light works remarkably well for objects >> wavelength

ACT: rays \& shadows

A room is lit by an overhead, circular light fixture. A small opaque disk is placed in front of the light, as shown below.

2

At which position(s) does the disk cast a shadow on the floor that is completely dark?
A. 1
B. 2
C. Both
D. Neither

Seeing objects

How do we see objects?
We only see objects if light rays enter our eyes

We know object's location
by where rays come from
Rays from bulb reflect off plant and go in all directions. Some rays enter the eyes.

What if object does not emit light? What about color?

Color results from some wavelengths of light being absorbed vs. others being reflected

ACT: Iaser pointer

Should you be able to see the light from the laser pointer in the picture below?

A. Yes
B. No

Law of reflection

When light travels into a different material (ex: metal) it reflects

Angle of incidence $=$ Angle of reflection

$$
\theta_{i}=\theta_{r}
$$

ACT: Materials

Why do you think metals are "shiny", i.e. good at reflecting light?

Because:

A. Electrons are free to move in metals
B. Metals can be polished better than insulators
C. The E field is zero inside conductors

Specular \& diffuse reflection

Specular reflection - reflection from a smooth surface Diffuse reflection - reflection from a rough, irregular surface

Ex: plane mirror

Ex: rough surface

Reflection \& images

How do we see reflected images in a flat mirrors?

Image is:

- Virtual - no light behind mirror
- Upright
- Same size
- Left \& right are reversed!
"Ray diagram"

CheckPoints 1 \& 2

Why is the word "AMBULANCE" written backwards on the front hood of all ambulances?

Can the man see the top of the plant in the mirror?

Calculation: Plane Mirror

A man is looking at himself in a mirror on the wall. His eyes are a distance $h=1.6 \mathrm{~m}$ from the floor.

At what maximum height above the floor must the bottom of the mirror be to see his shoes?

Phys. 102, Lecture 17, Slide 15

ACT: Plane mirror

The man is standing in front of a short flat mirror that is placed too high, so he can only see down to his knees

To see his shoes, he must move:
A. closer to the mirror
B. further from the mirror
C. moving closer or further will not help

ACT: Two mirrors

An object is placed in front of two perpendicular plane mirrors

How many images will there be (not including the actual object)?
A. 1
B. 2
C. 3
D. 4

Index of refraction

When light travels in a transparent material (ex: a dielectric like glass) its speed is slower

EM wave must oscillate at same frequency, so wavelength and speed decrease: $v=\lambda f$

Material	$n(\lambda=590 \mathrm{~nm})$
Vacuum	1 (exactly)
Air	1.000293
Pure water	1.333
Oil	1.46
Glass	$1.5-1.65$
Diamond	2.419

Snell's law of refraction

Light bends when traveling into material with different n

Calculation: Snell's law

A ray of light traveling through the water ($n=1.33$) is incident on air $(n=1.0)$. Part of the beam is reflected at an angle $\theta_{r}=45^{\circ}$. The other part of the beam is refracted. What is θ_{2} ?

$$
\begin{array}{cl}
\text { Reflection } & \text { Refraction } \\
\theta_{1}=\theta_{r} & n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
\end{array}
$$

ACT: CheckPoint 3

A ray of light travels through two transparent materials as shown below.

Compare the index of refraction of the two materials:
A. $n_{1}>n_{2}$
B. $n_{1}=n_{2}$
C. $n_{1}<n_{2}$

Calculation: refraction \& images

A ball is placed at the bottom of a bucket of water at a depth of $d_{\text {true }}$. Where does its image appear to an observer outside the water?

Note: Angles are exaggerated

$$
\begin{gathered}
x=d_{\text {app }} \tan \theta_{1}=d_{\text {true }} \tan \theta_{2} \\
d_{\text {app }} \approx d_{\text {true }} \frac{n_{1}}{n_{2}}
\end{gathered}
$$

> For small angles:
> $\theta \approx \sin \theta \approx \tan \theta$

$$
\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}} \approx \frac{\tan \theta_{2}}{\tan \theta_{1}}
$$

Summary of today's lecture

- Ray model of light

We see objects if emitted or reflected light rays enter our eyes

- Light rays can be absorbed, reflected \& refracted

Law of reflection $\theta_{i}=\theta_{r}$
Snell's law of refraction $n_{1} \sin \theta_{1}=n_{1} \sin \theta_{2}$

- Images from reflection \& refraction

We see images from where light rays appear to originate

