

# Phys 102 – Lecture 2

**Coulomb's Law & Electric Dipoles** 

#### Today we will...

- Get practice using Coulomb's law & vector addition
- Learn about electric dipoles
- Apply these concepts!

   Molecular interactions
   Polar vs. nonpolar molecules
   Hydrophilic vs. hydrophobic
   Permanent vs. induced dipole

**Chemistry!** 

#### Recall: Coulomb's Law

Force between charges  $q_1$  and  $q_2$  separated a distance r:



Opposite charges attract, like charges repel

$$\vec{F}_{12} = -\vec{F}_{21}$$

### Superposition principle

Total force on charge due to other charges = sum of individual forces

$$\vec{F}_{tot} = \sum \bar{F}$$

Ex: what is the force on  $q_1$  due to  $q_2$ ,  $q_3$ , and  $q_4$ ?



### Calculation: four charges

Calculate the total force on charge  $q_1 = +2 \ \mu C$  due to charges  $q_2 = +7 \ \mu C$ ,  $q_3 = -3.5 \ \mu C$ 

Fundamental concept: Superposition

$$\vec{F}_{1tot} = \vec{F}_{12} + \vec{F}_{13}$$



# ACT: four charges

Which vector best represents the total force on charge  $q_1 = +2 \mu C$ due to charges  $q_2 = +7 \mu C$  and  $q_3 = -3.5 \mu C$ ?



### Calculation: four charges

Calculate the total force on charge  $q_1 = +2 \mu C$  due to charges  $q_2 = +7 \mu C$  and  $q_3 = -3.5 \mu C$ 

• Calculate magnitudes of forces



#### ACT: components

#### What is the *x*-component of $\vec{F}_{12}$ , $F_{12,x}$ ?

A.  $3/4 F_{12}$  B.  $3/5 F_{12}$  C.  $-4/5 F_{12}$ 



Decompose vectors into components

#### ACT: components

#### What is the y-component of $\vec{F}_{13}$ , $F_{13,y}$ ?

A.  $3/4 F_{13}$  B.  $3/5 F_{13}$  C.  $-4/5 F_{13}$ 



Decompose vectors into components

### Calculation: four charges

Calculate the total force on charge  $q_1 = +2 \mu C$  due to charges  $q_2 = +7 \mu C$  and  $q_3 = -3.5 \mu C$ 

• Add like components



### Calculation: four charges

Calculate the total force on charge  $q_1 = +2 \mu C$  due to charges  $q_2 = +7 \mu C$  and  $q_3 = -3.5 \mu C$ 

• Magnitude of total force



## ACT: CheckPoint 1.1

Consider three charges on a circular ring,  $q_1 = +2q$ ,  $q_2 = q_3 = +q$ . A charge +Q is placed at the center of the circle.

What is the *x*-component of the total force on *Q*?

- A.  $F_x > 0$
- B.  $F_x = 0$
- C.  $F_x < 0$



# ACT: CheckPoint 1.2

Consider three charges on a circular ring,  $q_1 = +2q$ ,  $q_2 = q_3 = +q$ . A charge +Q is placed at the center of the circle.

What is the <u>y-component</u> of the total force on Q?

A.  $F_y > 0$ B.  $F_y = 0$ C.  $F_v < 0$ 



# Electric dipole & dipole moment

A positive and negative charge of equal magnitude *q* separated by a (usually small) distance *d* 

$$d \int \frac{+q}{-q} = \int \vec{p}$$

<u>Dipole moment</u> is measure of separated + and – charges

$$p \equiv qd$$

From – to + charge (by convention)

Note: opposite from Lewis notation (Chemistry)

What are examples of electric dipoles?

### Molecular dipole

Electrons are not shared equally between chemically bonded atoms Charge imbalance creates a *bond dipole* 



### ACT: CheckPoint 2.1

An electric dipole is placed near a large positive charge +Q. In what direction is the net force on the dipole?

A. Left B. Zero C. Right +Q -q +q

# ACT: Dipole & 2 charges

Consider an electric dipole placed an equal distance from a +Q and a -Q charge. Does the dipole move?



# Ion-dipole interactions

#### Polar molecules are attracted to ions

Dipole moment aligns away from + charge, toward – charge



## **Dipole-dipole interactions**

#### Polar molecules interact together

Dipole moments align end-to-end + to – Like magnets!



Ex: hydrogen bond is a dipole-dipole interaction between water molecules



Phys. 102, Lecture 2, Slide 19

# Hydrophilic vs. hydrophobic

#### Polar molecules interact with charged & polar molecules

Ex: charged & polar molecules attract water, nonpolar molecules do not

#### Hydrophilic

"attract water"

#### Hydrophobic

"repel water"







Protein structure

Phys. 102, Lecture 2, Slide 20



# ACT: Charge & conductor

An uncharged conducting sphere is placed next to a fixed + charge. What happens when the uncharged sphere is released?



# **Molecular interactions**

Interactions between molecules are understood in terms of <u>charges</u> and <u>electric dipoles</u> interacting by Coulomb's law



# Summary of today's lecture

- Coulomb's law
- Superposition principle  $\vec{F}_{tot} = \sum \vec{F}$
- Electric dipole & dipole moment

Permanent vs. induced dipole