

Phys 102 – Lecture 4

Electric potential energy & work

Today we will...

- Learn about the *electric potential energy*
- Relate it to *work*

Ex: charge in uniform electric field, point charges

Apply these concepts

Ex: electron microscope, assembly of point charges, dipole energy

Potential energy

Potential energy U – stored energy, can convert to kinetic energy K

Gravitational potential energy (ex: falling object)

Review Phys. 101

Elastic potential energy (ex: spring)

Total energy K + U is <u>conserved</u>

Same ideas apply to electricity

Electric potential energy (ex: repelling charges)

Phys. 102, Lecture 3, Slide 3

Work

Review Phys. 101

Work – transfer of energy when a force acts on a moving object

It matters who does the work

For conservative forces, work is related to potential energy

Electric potential energy & work	
$W_F = -W_{you} = -\Delta U = F\Delta r\cos\theta$	
Gravity	Electricity
Mass raised $y_i \rightarrow y_f$	Charge moved $x_i \rightarrow x_f$ (in uniform E field to left)
$F_G = mg$ down	$F_E^{}=qE^{}$ left
$W_G = -mgh$	$W_E = -qEd$
$W_{you} = +mgh$	$W_{you} = +qEd$
$\Delta U_G = +mgh$	$\Delta U_E = +qEd$
$y_{f} \stackrel{f}{\longrightarrow} \Delta \vec{r}$ $y_{i} \stackrel{f}{\longrightarrow} \vec{F}_{G}$	$\vec{E} \xrightarrow{F_E} \Delta \vec{r}$ Phys. 102, Lecture 3, Slide 5

Positive and negative work

If you moved object against external force (gravitational, electric, etc.), you did *positive* work, force did *negative* work

 $W_{you} > 0$ $W_F < 0$ $W_{you} < 0$ $W_F > 0$

If you moved object along external force (gravitational, electric, etc.), you did *negative* work, force did *positive* work

Checkpoint 1.2

When a negative charge is moved from A to C the ELECTRIC force does

- A. positive work
- B. zero work
- C. negative work

ACT: Checkpoint 1.3

When a negative charge is moved from A to B the ELECTRIC force does

- A. positive work
- B. zero work
- C. negative work

ACT: Work in a uniform E field ACT: Uork in a uniform E field • C • C • C • C • B

The negative charge is now moved from A to C to B. The work done by the electric force is

- A. Greater than W_{A-B}
- B. Same as W_{A-B}
- C. Less than W_{A-B}

Path independence of work

For conservative forces (ex: gravitational, electric), work is *independent* of path. Work depends <u>only</u> on end points.

$$W_{A-B} = -\Delta U = -(U_B - U_A)$$

Potential energy of charge at position B

Potential energy of charge at position A

Phys. 102, Lecture 3, Slide 10

Calculation: Electron microscope (revisited)

A uniform E field generated by parallel plates accelerates electrons in an electron microscope. If an electron starts from rest at the top plate what is its final velocity?

E.P.E of two point charges

Electric potential energy of two charges q_1 and q_2 separated by a distance r

Ex: What is the electric potential energy of the proton and the electron in H?

ACT: E.P.E. of 2 charges

In case A, two charges of equal magnitude but opposite sign are separated by a distance d. In case B, they are separated by 2d.

Which configuration has a higher electric potential energy?

- A. Case A has a higher E.P.E.
- B. Case B has a higher E.P.E.
- C. Both have the same E.P.E.

Sign of potential energy

What does it mean to have a *negative* electric potential energy?

 $U_E < 0$ relative to energy of an electron very far away $(r \rightarrow \infty)$, away from *E* field of proton, i.e. a "free" electron

Energy must be added in order to free electron bound to proton

Calculation: two charges

Two +5 C, 1 kg charges are separated by a distance of 2 m. At t = 0 the charge on the right is released from rest (the left charge is fixed). What is the speed of the right charge after a long time $(t \rightarrow \infty)$?

Work done to assemble charges

How much work do *you* do assembling configuration of charges?

Imagine bringing charges from infinitely far away to a separation r

$$W_{you} = +\Delta U_E = k \frac{q_1 q_2}{r} - 0$$
 Potential energy of charges infinitely far
Potential energy of charges
in final configuration

Phys. 102, Lecture 3, Slide 16

Calculation: assembling charges

How much work <u>do you do</u> to assemble the charges $q_1 = +2 \mu C$, $q_2 = +7 \mu C$, and $q_3 = -3.5 \mu C$ into a triangle?

ACT: Checkpoint 2.1

Charges of equal magnitude are assembled into an equilateral triangle

The total work required <u>by you</u> to assemble this set of charges is:

- A. positive
- B. zero
- C. negative

Calculation: dipole in E-field

An electric dipole with moment $p = 6.2 \times 10^{-30}$ C·m is placed in a uniform external electric field $E = 10^6$ N/C at an angle $\theta = 60^\circ$. Calculate the total *electric potential energy* of the dipole.

ACT: dipole energy

Which configuration of dipole in a uniform electric field has the lowest electric potential energy?

Summary of today's lecture

Electric potential energy & work

$$W_F = -W_{you} = -\Delta U = F\Delta r\cos\theta$$

Path independence

Conservation of energy

• Electric potential energy for point charges $U_E = k \frac{q_1 q_2}{d_1 d_2}$

r