

Phys 102 - Lecture 4

Electric potential energy \& work

Today we will...

- Learn about the electric potential energy
- Relate it to work

Ex: charge in uniform electric field, point charges

- Apply these concepts

Ex: electron microscope, assembly of point charges, dipole energy

Potential energy

Potential energy U - stored energy, can convert to kinetic energy K

Gravitational potential energy (ex: falling object)

Review Phys. 101

Elastic potential energy (ex: spring)

Total energy $K+U$ is conserved
Same ideas apply to electricity

Electric potential energy (ex: repelling charges)

Work

Review Phys. 101

Work - transfer of energy when a force acts on a moving object

It matters who does the work
For conservative forces, work is related to potential energy

Electric potential energy \& work

$$
W_{F}=-W_{y o u}=-\Delta U=F \Delta r \cos \theta
$$

Gravity

Mass raised $y_{i} \rightarrow y_{f}$
$W_{G}=-m g h$
$W_{y o u}=+m g h$
$\Delta U_{G}=+m g h$

Charge moved $x_{i} \rightarrow x_{f}$ (in uniform E field to left)

$$
\begin{aligned}
& F_{E}=q E \quad \text { left } \\
& W_{E}=-q E d \\
& W_{y o u}=+q E d \\
& \Delta U_{E}=+q E d
\end{aligned}
$$

Positive and negative work

If you moved object against external force (gravitational, electric, etc.), you did positive work, force did negative work

$$
W_{\text {you }}>0 \quad W_{F}<0 \quad W_{\text {you }}<0 \quad W_{F}>0
$$

If you moved object along external force (gravitational, electric, etc.), you did negative work, force did positive work

Checkpoint 1.2

When a negative charge is moved from A to C the ELECTRIC force does
A. positive work
B. zero work
C. negative work

ACT: Checkpoint 1.3

When a negative charge is moved from A to B the ELECTRIC force does
A. positive work
B. zero work
C. negative work

ACT: Work in a uniform E field

The negative charge is now moved from A to C to B. The work done by the electric force is
A. Greater than W_{A-B}
B. Same as W_{A-B}
C. Less than W_{A-B}

Path independence of work

For conservative forces (ex: gravitational, electric), work is independent of path. Work depends only on end points.

$$
W_{A-B}=-\Delta U=-\left(U_{B}-U_{A}\right)_{\leftarrow} \quad \begin{gathered}
\text { Potential energy of } \\
\text { charge at position } \mathrm{A}
\end{gathered} \begin{gathered}
\text { Potential energy of } \\
\text { charge at position B }
\end{gathered} \quad \begin{aligned}
& \text { Phys. 102, Lecture 3, Slide 10 }
\end{aligned}
$$

Calculation: Electron microscope (revisited)

A uniform E field generated by parallel plates accelerates electrons in an electron microscope. If an electron starts from rest at the top plate what is its final velocity?

E.P.E of two point charges

Electric potential energy of two charges q_{1} and q_{2} separated by a distance r

$$
U_{E}=k \frac{q_{1} q_{2}}{(r)} \text { _ Note: NOT } r^{2}
$$

Ex: What is the electric potential energy of the proton and the electron in H ?

ACT: E.P.E. of 2 charges

In case A, two charges of equal magnitude but opposite sign are separated by a distance d. In case B, they are separated by $2 d$.

Which configuration has a higher electric potential energy?
A. Case A has a higher E.P.E.
B. Case B has a higher E.P.E.
C. Both have the same E.P.E.

Sign of potential energy

What does it mean to have a negative electric potential energy?

$U_{E}<0$ relative to energy of an electron very far away $(r \rightarrow \infty)$, away from E field of proton, i.e. a "free" electron

Energy must be added in order to free electron bound to proton

Calculation: two charges

Two +5 C, 1 kg charges are separated by a distance of 2 m . At $t=0$ the charge on the right is released from rest (the left charge is fixed). What is the speed of the right charge after a long time $(t \rightarrow \infty)$?

Work done to assemble charges

How much work do you do assembling configuration of charges?

Imagine bringing charges from infinitely far away to a separation r

$$
\begin{array}{cc}
W_{y o u}=+\Delta U_{E}=k \frac{q_{1} q_{2}}{r}-0 & \begin{array}{l}
\text { Potential energy of } \\
\text { charges infinitely far }
\end{array} \\
& \begin{array}{l}
\text { Potential energy of charges } \\
\text { in final configuration }
\end{array}
\end{array} \quad \text { Phys. 102, Lecture 3, slide } 16
$$

Calculation: assembling charges

How much work do you do to assemble the charges $q_{1}=+2 \mu \mathrm{C}$, $q_{2}=+7 \mu \mathrm{C}$, and $q_{3}=-3.5 \mu \mathrm{C}$ into a triangle?

ACT: Checkpoint 2.1

Charges of equal magnitude are assembled into an equilateral triangle

The total work required by you to assemble this set of charges is:
A. positive
B. zero
C. negative

Calculation: dipole in E-field

An electric dipole with moment $p=6.2 \times 10^{-30} \mathrm{C} \cdot \mathrm{m}$ is placed in a uniform external electric field $E=10^{6} \mathrm{~N} / \mathrm{C}$ at an angle $\theta=60^{\circ}$.
Calculate the total electric potential energy of the dipole.

ACT: dipole energy

Which configuration of dipole in a uniform electric field has the lowest electric potential energy?

Summary of today's lecture

- Electric potential energy \& work

$$
W_{F}=-W_{y o u}=-\Delta U=F \Delta r \cos \theta
$$

Path independence
Conservation of energy

- Electric potential energy for point charges $U_{E}=k \frac{q_{1} q_{2}}{r}$

