Welcome to Physics 102!

- Electricity & Magnetism (forces that hold atoms & molecules together, living cells)
- Light
- Atomic & Nuclear Physics

Course content

Lerequisitel Cours

Macroscopic

- Kinematics
- Forces
- Energy
- Fluids
- Waves (Sound)

Physics 102 Microscopic

- Electricity & circuits
- Magnetism & induction
- Optics
- Modern Physics

Meet the course directors

• Lecturer:

Research: Office Hours:

- Discussion coordinator:
- Lab & exam coordinator:

When emailing me:

- Email must be sent from <u>@illinois.edu</u>
- Subject line should begin with "PHYS102 question:"
- Message should contain:

your full name, NetID, discussion section, TA name

• Questions about physics:

Do not use email, use office hours (see course website)

• Before emailing:

Verify information is not already on the <u>course website</u>

The course directors reserve the right to penalize your HW score if you ask questions via email that are answered on the website

Course Website

- <u>http://courses.physics.illinois.edu/phys102/</u>
- Course Description / Excused Absences
- First Discussion:
- First Lab:
- Exam dates:
- Required Materials:

Be sure to register your i>clicker prior to lecture

Course Philosophy

- Think about it (pre-lecture & checkpoint)
- Untangle it (lectures)
- Play with it (labs)
- Challenge yourself (homework)
- Close the loop (discussion/quiz)

The order is important!

Phys 102 – Lecture 1

Electric charge & Coulomb's law

Phys. 102, Lecture 1, Slide 7

4 Fundamental forces of Nature

Phys. 101 Gravitational force (solar system, galaxies)
 Phys. 102 Electromagnetic force (atoms, molecules)
 Strong force (atomic nuclei)
 Weak force (radioactive decay)

strongest

weakest

Electric charge

Charge is an intrinsic property of matter, like mass

- EM force -> <u>electric charge</u>
 Positive & negative charge
 Opposite charges attract, like charges repel
- Gravity -> <u>mass</u>

Mass always positive Gravity always attractive

Units of electric charge

- Symbol: q or Q
- Unit: [Coulomb] = [C]

Electron: $-e = -1.6 \times 10^{-19} \text{ C}$ Proton: $+e = +1.6 \times 10^{-19} \text{ C}$

• How much charge is 1 C?

Imagine you could separate H⁺ and OH⁻ ions in pure water (pH 7.0)

Conductors & insulators

Q: How do electrons behave in a perfect conductor?

Q: How do electrons behave in a perfect insulator?

Most things are in between perfect conductor / insulator

Phys. 102, Lecture 1, Slide 11

ACT: Conductors

Electrons are placed on a neutral conducting sphere. Which of the following diagrams correctly depicts how the charges are distributed?

Conservation of charge

Charges are physical entities (ex: electrons, protons) Cannot be created or destroyed

The net charge in a closed system is conserved

However, charges (often electrons) can be transferred from one object to another

Demo: electroscope

• Charging by conduction

Charged rod is brought near scope Charged rod touches scope transferring some charge Scope is left with <u>same</u> charge as rod

Demo: electroscope

• Charging by *induction*

Charged rod is brought near scope (but does NOT touch) Scope is briefly grounded allowing charge to flow on (or off) Scope is left with <u>opposite</u> charge as rod

ACTs: Electroscope

A *positively* charged rod is used to charge an electroscope by *induction*. What is the resulting net charge on the electroscope?

A. positive B. zero C. negative

If the conducting electroscope were replaced by an *insulating* ball and then charged by induction as above, what would be the net charge on the ball?

A. positive B. zero C. negative

Coulomb's Law (1785)

Force between charges q_1 and q_2 separated a distance *r*:

$$F = \frac{k|q_1||q_2|}{r^2}$$

"Coulomb constant" $k = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Or:
$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{r^2}$$

Magnitude

"Permittivity of free space" $\varepsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$

^{wection} Opposite charges attract, like charges repel

Coulomb's Law

What is the magnitude of the force on the proton due to the electron in hydrogen?

Compare to gravitational force between them (Phys. 101)

ACT: Coulomb's Law

What is the direction of the force on the proton due to the electron in the hydrogen atom?

What is the direction of the force on the *electron due to the proton*?

ACT: Coulomb's Law

Two charges $q_1 = +1 \ \mu$ C and $q_2 = +10 \ \mu$ C are placed near each other. Which of the following diagrams correctly depicts the forces acting on the charges?

Summary of Today's Lecture

- Electric charge
- Conservation of charge
- Conductors and insulators
- Coulomb's Law for the force between charges

$$F = \frac{kq_1q_2}{r^2}$$

Much more on Coulomb's Law in next lecture