

Phys 102 – Lecture 16

Electromagnetic wave energy & polarization

Today we will...

• Learn about properties of electromagnetic waves

Energy density & intensity

Polarization – linear, circular, unpolarized

- Apply those concepts
 - Linear polarizers
 - **Optical activity**
 - Circular dichroism

E & B field energy density

There is energy stored in an E & B field

$$U_{C} = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{\varepsilon_{0}A}{d}(Ed)^{2} = \frac{1}{2}\varepsilon_{0}E\mathcal{A}d \leftarrow \frac{\text{Volume containing}}{E \text{ field}}$$

It is convenient to define *energy density* = energy per volume $[J/m^3]$

$$u_E = \frac{1}{2} \varepsilon_0 E^2$$
These expressions are correct
$$u_B = \frac{1}{2\mu_0}$$
for any E & B field in a vacuum

Phys. 102, Lecture 16, Slide 3

 B^2

EM wave energy

There is energy stored in an EM wave in oscillating E & B fields

Since *E* and *B* oscillate, we measure the *average energy density*

$$\langle u_E \rangle = \frac{1}{2} \varepsilon_0 \langle E^2 \rangle = \frac{1}{2} \varepsilon_0 E_{rms}^2 \qquad E_{rms} = \frac{1}{\sqrt{2}} \varepsilon_0 \qquad E \& B \text{ field amplitudes}$$

$$\langle u_B \rangle = \frac{1}{2\mu_0} \langle B^2 \rangle = \frac{1}{2\mu_0} B_{rms}^2 \qquad B_{rms} = \frac{1}{\sqrt{2}} \varepsilon_0 \qquad \text{Recall that}$$

$$\langle u_{tot} \rangle = \frac{1}{2} \varepsilon_0 E_{rms}^2 + \frac{1}{2\mu_0} B_{rms}^2 = \varepsilon_0 E_{rms}^2 = \frac{B_{rms}^2}{\mu_0} \qquad c = 1/\sqrt{\varepsilon_0 \mu_0}$$

EM wave intensity

A source of light emits EM energy at a rate given by the power *P*:

 $\langle P \rangle = \frac{\Delta \langle U \rangle}{\Delta t}$ Units: W

Same energy flows through surfaces at larger distances, but spread over a larger surface area A.

Intensity corresponds to "brightness" of light

Phys. 102, Lecture 16, Slide 5

ACT: EM wave intensity

 I_P is the light intensity at a point P a distance r from a point source, a 60 W light bulb. (Assume all electric power goes into EM wave)

What is the light intensity at a distance 2r?

A.
$$2I_P$$

B. I_P
C. $I_P/2$
D. $I_P/4$

Calculation: EM power

A light bulb emits an average 60 W of power. Calculate $E_{rms} \& B_{rms}$ at a distance r = 2 m from bulb. (Assume all electric power goes into EM wave)

By energy conservation, power emitted = power through spherical surface at r = 2 m

$$\langle P \rangle = IA = \langle u_{tot} \rangle c 4\pi r^2$$

$$\left\langle u_{tot}\right\rangle = \varepsilon_0 E_{rms}^2$$

CheckPoint 1.1–1.7

Polarization

EM waves are transverse and have *polarization* – by convention, the direction of the *E* field oscillation

Unpolarized – direction is random

For convenience we will stop showing the B field

Linear polarizers

Linear polarizers consist of || metal lines that absorb || *E* field.

Transmission axis (TA) is defined in direction that E field passes

What happens for other angles between polarization and TA?

Law of Malus

Given angle θ between TA and polarization of incident EM wave:

Component of *E* field \perp to TA axis is absorbed:

Light emerges with polarization || to TA axis

Phys. 102, Lecture 16, Slide 11

ACT: polarizer

A vertically polarized EM wave passes through a linear polarizer with TA at 45°

What is the direction of the *B* field after the polarizer? A. $B. C. D. \leftarrow$

What is the magnitude?

Calculation: unpolarized light

Unpolarized light is incident on a linear polarizer. What is the transmitted intensity?

Unpolarized light has an equal mixture of all possible θ 's

Light emerges with polarization || to TA axis

Phys. 102, Lecture 16, Slide 13

ACT: CheckPoint 2.1

Unpolarized light passes through a linear polarizer with a vertical TA.

What is the intensity of light when it emerges?

- A. zero
- B. 1/2 what it was before
- C. 1/4 what it was before
- D. 1/3 what it was before

ACT: CheckPoint 2.2

Now the light that emerged from the previous polarizer passes through a second linear polarizer with a horizontal TA.

What is the intensity of light when it emerges?

- A. zero
- B. 1/2 what it was before
- C. 1/4 what it was before
- D. 1/3 what it was before

ACT: 3 polarizers

Now suppose we add a third polarizer between the two outer polarizers. The polarizer TA is tilted from vertical.

What is the intensity of the light that emerges?

DEMO

- A. zero, same as before
- B. more than what it was before
- C. need more information

Calculation: 3 polarizers

Chirality & optical activity

Many organic molecules are *chiral* – they have "handedness"

L-alanine

D-alanine (unnatural enantiometer)

Chiral molecules rotate linearly polarized light – optical activity

"Dextrorotary" CW rotation "Levorotary" CCW rotation

Circular dichroism

Chiral molecules also absorb left vs. right circularly polarized light differently

Circular dichroism (CD) measures difference in absorption

Tool to distinguish chiral features in biomolecules

 α -helix (right-handed helix)

ACT: Law of Malus

Compare the light emerging from the two polarizers in A and B:

A.
$$I_2^A > I_2^B$$
 B. $I_2^A = I_2^B$ C. $I_2^A < I_2^B$

Summary of today's lecture

• Electromagnetic waves

Carry energy in *E* and *B* fields – energy density & intensity Are transverse & polarized – linear, circular, unpolarized

Applications

Linear polarizers – Law of Malus Optical activity Circular dichroism