

Phys 102 – Lecture 3

The Electric field

Today we will...

- Learn about the *electric field*
- Apply the superposition principle Ex: Dipole, line of charges, plane of charges
- Represent the E field using electric field lines
- Apply these concepts!
 - Dipoles in electric fields
 - Conductors in electric fields

The electric field

The electric field is defined at a *location* in space around a charge or set of charges

^{N²g^{itude}} Magnitude given by:
$$E = \frac{F}{|q|}$$
 Units: N/C

Direction is the same as for the force that a + charge *would feel* at that location

Calculation: Electric field in H atom

What is the magnitude of the electric field due to the proton at the *position* of the electron?

What is the direction?

Electric field from + and – charges

Superposition principle

Total E-field due to several charges = sum of individual E-fields

$$\vec{E}_{tot} = \sum \vec{E}$$

Ex: what is the E-field at point P due to q_1 , q_2 , and q_3 ?

ACT: CheckPoint 1.1

Two equal, but opposite charges are placed on the x-axis at x = -5 and x = +5. What is the direction of the electric field at point A on the y-axis?

ACT: Line of charge

Consider a very long line of negative charges (ex: DNA). What is the direction of electric field at point *P*?

Plane of charge

A large plane of charges creates a *uniform* electric field (constant magnitude, direction)

ACT: two charged planes

Consider two large parallel planes with equal and opposite charge +Q and -Q separated by a small distance

If the electric field from one plane is E_{plane} , what is the magnitude of total electric field at position *P* <u>above</u> the two parallel planes?

Calculation: Electron microscope

A uniform E field generated by parallel plates accelerates electrons in an electron microscope. If an electron starts from rest at the top plate what is its final velocity?

Electric field lines for charges

Electric field lines represent E field direction and magnitude graphically

Electric field lines for dipoles

CheckPoint 2.1

Charge A is

A. positive B. negative C. unknown

Phys. 102, Lecture 3, Slide 14

ACT: CheckPoint 2.2

Compare the charges $|Q_A| \& |Q_B|$

A. $|Q_A| = |Q_B|/2$ B. $|Q_A| = |Q_B|$ C. $|Q_A| = 2|Q_B|$

Phys. 102, Lecture 3, Slide 15

ACT: CheckPoint 2.4

The magnitude of the electric field at point X is greater than at point Y

A. True B. False

Phys. 102, Lecture 3, Slide 16

Calculation: dipole in E-field

An electric dipole with moment $p = 6.2 \times 10^{-30}$ C·m is placed in a uniform external electric field $E = 10^6$ N/C at an angle $\theta = 60^\circ$. Calculate the total *force* and *torque* on the dipole.

Dipole in E field

Electric dipole moments align parallel to electric field

Conductors & electric fields

Imagine placing a conductor inside a uniform external E field

Conductors & electric fields

Imagine placing a conductor inside a uniform external E field

Another way to look at it:

ACT: Conductor & E field

Which diagram best represents the *E* field around a positively charged conducting spherical shell?

Summary of today's lecture

• Electric fields

Electric field lines

- Superposition principle $\vec{E}_{tot} = \sum \vec{E}$ Dipole, line, plane
- Dipoles & electric fields
- Conductors & electric fields $\vec{E}_{cond.} = 0$