

Phys 102 - Lecture 7

Series and parallel circuits

Today we will...

- Learn about electric circuits

Circuits with a battery, wires, and resistors
Circuits with a battery, wires, and capacitors

- Analyze circuits

Take a complex-looking circuit like...
...and turn into a simple-looking circuit like

Phys. 102, Lecture 7, Slide 2

Recall from last time...

Electric potential difference across circuit element is its "voltage"
$V_{\text {element }}$ Should be " $\Delta \mathrm{V}$ ", but we'll usually drop the " Δ "

Batteries - pump charges Provide emf for charges

$$
V_{\text {battery }}=\varepsilon
$$

Resistors - regulate current Dissipate power

$$
V_{R}=I R
$$

Capacitors - store charge Store energy

$$
V_{C}=\frac{Q}{C}
$$

Circuits connect elements with wires, which we treat as ideal conductors

Kirchhoff loop rule

A charge making a complete loop around a circuit must return to the same electric potential ("height") at which it started

Sum of electric potential differences (voltages) around circuit loop is zero

Phys. 102, Lecture 7, Slide 4

Series components

Two components are said to be in series when they are connected end-to-end by a single wire

Phys. 102, Lecture 7, Slide 5

ACT: CheckPoint 1.2

Consider a circuit with two resistors R_{1} and R_{2} in series. Compare the voltages across the resistors:

A. $\quad V_{1}>V_{2}$
B. $V_{1}=V_{2}$
C. $V_{1}<V_{2}$

ACT: Capacitors in series

Consider a circuit with two capacitors C_{1} and C_{2} in series. Compare the voltages across the capacitors:

A. $\quad V_{1}>V_{2}$
B. $V_{1}=V_{2}$
C. $V_{1}<V_{2}$

Equivalent resistance \& capacitance

Circuit behaves the same as if series components were replaced by a single, equivalent component

Resistors
Capacitors

Phys. 102, Lecture 7, Slide 8

Calculation: vascular resistance

The circulatory system is analogous to an electric circuit

The circulatory system consists of different types of vessels in series with different resistances to flow

Calculation: vascular resistance

Calculate the current I through the vascular circuit and the voltages across the different types of vessels

Kirchhoff junction rule

Charges flowing through a junction split. By conservation of charge, the sum of currents into a junction equals the sum of currents out of a junction

Phys. 102, Lecture 7, Slide 11

Parallel components

Components are said to be in parallel when both ends are connected to each other, forming a loop containing only them

Phys. 102, Lecture 7, Slide 12

ACT: Parallel or series?

Consider the circuit to the right. Which of the following statements is true?

A. $\quad C_{1} \& C_{4}$ are in series
B. $C_{2} \& C_{4}$ are in parallel
C. $C_{1} \& C_{3}$ are in parallel

ACT: Resistors in parallel

Consider a circuit with two resistors R_{1} and R_{2} in parallel.
Compare I_{1}, the current through R_{1}, to I_{2}, the current through R_{2} :

A. $\quad I_{1}>I_{2}$
B. $I_{1}=I_{2}$
C. $I_{1}<I_{2}$

ACT: CheckPoint 2.3

Now we add a switch S. What happens to the current out of the battery when the switch is closed?

A. $I_{\text {battery }}$ increases
B. I battery remains the same
C. $I_{\text {battery }}$ decreases

Equivalent resistance \& capacitance

Circuit behaves the same as if parallel components were replaced by a single, equivalent component

$Q_{1}+Q_{2}=Q_{e q} \quad V_{1}=V_{2}=V_{e q}$

$$
C_{e q}=C_{1}+C_{2}
$$

Phys. 102, Lecture 7, Slide 16

Calculation: vascular resistance

In previous calculation, capillaric resistance accounts for $\sim 20 \%$ of total vascular resistance, yet capillaries are the thinnest blood vessels, and should have the highest resistance. Why?

Calculation: cardiovascular system

The human cardiovascular system consists of two circuits: pulmonary circulation which carries blood though the lungs, and systemic circulation which carries blood to the organs

The organs of the body are connected in parallel in the systemic circuit

Simple circuit model*:

$$
\begin{aligned}
& R_{\text {pulm }}=12 \Omega, R_{\text {brain }}=1 \mathrm{k} \Omega, \\
& R_{\text {body }}=160 \Omega, \varepsilon_{\text {heart }}=120 \mathrm{~V}
\end{aligned}
$$

*Numbers represent accurate relative values
Calculate current through each component of circulatory system

Phys. 102, Lecture 7, Slide 18

ACT: analyzing circuits

Which of the following circuit is different than the others?

III

A. Circuit I
B. Circuit II
C. Circuit III
D. All three are equivalent
E. All three are different

Calculation: circulatory system

Calculate current through each component of circulatory system

$$
R_{\text {pulm }}=12 \Omega, R_{\text {brain }}=1 \mathrm{k} \Omega, R_{\text {body }}=160 \Omega, \varepsilon_{\text {heart }}=120 \mathrm{~V}
$$

$R_{\text {pulm }} \& R_{\text {syst }}$ are in series

$$
\begin{aligned}
& R_{\text {tot }}=R_{\text {pulm }}+R_{\text {syst }} \\
& V_{\text {tot }}=V_{\text {pulm }}+V_{\text {syst }}=\varepsilon_{\text {heart }} \\
& I_{\text {heart }}=I_{\text {pulm }}=I_{\text {syst }}
\end{aligned}
$$

Calculation: circulatory system

Calculate current through each component of circulatory system

$$
R_{\text {pulm }}=12 \Omega, R_{\text {brain }}=1 \mathrm{k} \Omega, R_{\text {body }}=160 \Omega, \varepsilon_{\text {heart }}=120 \mathrm{~V}
$$

$R_{\text {pulm }} \& R_{\text {syst }}$ are in series

$$
\begin{aligned}
& R_{\text {tot }}=R_{\text {pulm }}+R_{\text {syst }} \\
& V_{\text {tot }}=V_{\text {pulm }}+V_{\text {syst }}=\varepsilon_{\text {heart }} \\
& I_{\text {pulm }}=I_{\text {syst }}=I_{\text {heart }}
\end{aligned}
$$

Calculation: circulatory system

Calculate current through each component of circulatory system

$$
R_{\text {pulm }}=12 \Omega, R_{\text {brain }}=1 \mathrm{k} \Omega, R_{\text {body }}=160 \Omega, \varepsilon_{\text {heart }}=120 \mathrm{~V}
$$

$R_{\text {brain }} \& R_{\text {body }}$ are in parallel
$\frac{1}{R_{\text {syst }}}=\frac{1}{R_{\text {brain }}}+\frac{1}{R_{\text {body }}}$

$$
\begin{aligned}
& V_{\text {syst }}=V_{\text {brain }}=V_{\text {body }} \\
& I_{\text {syst }}=I_{\text {brain }}+I_{\text {body }}
\end{aligned}
$$

Summary of today's lecture

- Two basic principles:
- Kirchhoff loop rule

Voltages around circuit loop sum to zero (based on conservation of energy)

$$
\sum \Delta V=0
$$

- Kirchhoff junction rule

Currents into a circuit branch equal currents out (based on conservation of charge)

$$
\sum I_{\text {in }}=\sum I_{\text {out }}
$$

Summary of today's lecture

- Series components \rightarrow N
 Currents are the same $I_{e q}=I_{1}=I_{2}$
Voltages add $V_{e q}=V_{1}+V_{2}$
Resistors $R_{e q}=R_{1}+R_{2}$
Capacitors $\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}$
- Parallel components

Voltages are the same $V_{e q}=V_{1}=V_{2}$

Currents add $I_{e q}=I_{1}+I_{2}$
Resistors $\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \quad$ Capacitors $C_{e q}=C_{1}+C_{2}$

- Don't mix equations!

