The next two questions pertain to the situation described below.

Two charges Q_1 and Q_2 are placed on the x-axis, at $x = 0$ and $x = 2 \text{ cm}$, respectively, as shown in the figure. The charge $Q_2 = 5.5 \mu\text{C}$, whereas Q_1 is not known. A third charge $q = +4.5 \mu\text{C}$ is placed a distance $x = 3 \text{ cm}$ from the origin, on the x-axis.

![Diagram of charges]

1) What must the value of Q_1 be such that the force on q due to charges 1 and 2 is zero?

 a. $Q_1 = -50 \mu\text{C}$
 b. $Q_1 = 17 \mu\text{C}$
 c. $Q_1 = 50 \mu\text{C}$
 d. $Q_1 = -17 \mu\text{C}$
 e. $Q_1 = -5.6 \mu\text{C}$

2) Does your answer change if charge q is now negative?

 a. No
 b. Yes
The next two questions pertain to the situation described below.

Consider the configuration of charges shown:
\(q_1 = -1 \text{ nC}, q_2 = -3 \text{ nC}, \text{ and } q_3 = +4 \text{ nC}. \)
The grid is 1 cm on a side.

3) Which of the following vectors best represents the direction of the total force \(F_{3,\text{tot}} \) on charge \(q_3 \) due to \(q_1 \) and \(q_2 \)?

a. Figure C
 b. Figure D
 c. Figure E
 d. Figure B
 e. Figure A

4) Calculate the magnitude of the total force \(|F_{3,\text{tot}}| \) on charge \(q_3 \) due to \(q_1 \) and \(q_2 \).

a. \(|F_{3,\text{tot}}| = 26 \mu\text{N} \)
 b. \(|F_{3,\text{tot}}| = 150 \mu\text{N} \)
 c. \(|F_{3,\text{tot}}| = 2200 \mu\text{N} \)
 d. \(|F_{3,\text{tot}}| = 630 \mu\text{N} \)
 e. \(|F_{3,\text{tot}}| = 93 \mu\text{N} \)
The next two questions pertain to the situation described below.

A positively charged rod is brought close but does not touch an uncharged conducting sphere (as shown in steps a-b below). As a rod approaches, the sphere is connected to ground by a conducting wire (c). The grounding wire and rod are then removed (d-e).

5) What is the charge on the conducting sphere after the sequence of steps?

 a. Zero
 b. Positive
 c. Negative

6) Now the sequence of steps is repeated, starting with the same conducting sphere (uncharged), but without grounding the sphere. What is the charge on the sphere after the sequence of steps (a-c)?

 a. Zero
 b. Negative
 c. Positive
The next three questions pertain to the situation described below.

An electroscope is built by suspending two identically sized conducting spheres of mass \(m = 0.02 \, \text{kg} \) from thin wires of length \(\ell = 15 \, \text{cm} \) as shown in the figure. After charging, both spheres make an angle of \(\theta = 15^\circ \) relative to vertical and \(Q_1 = Q_2 \). (Note: in this problem, you may ignore any mass or charge from the thin wires.)

7) Because the system is in equilibrium:
 a. Gravity does not act on the system.
 b. The spheres will experience a net acceleration.
 c. The spheres will not experience a net acceleration.

8) If the charge of both \(Q_1 \) and \(Q_2 \) is increased, the angle \(\theta \) will:
 a. decrease.
 b. increase.
 c. stay the same.

9) What is the magnitude of the charge \(|Q_1| \)?
 a. \(|Q_1| = 8.4 \times 10^{-8} \, \text{C} \)
 b. \(|Q_1| = 1.6 \times 10^{-7} \, \text{C} \)
 c. \(|Q_1| = 5 \times 10^{-8} \, \text{C} \)
 d. \(|Q_1| = 3.9 \times 10^{-8} \, \text{C} \)
 e. \(|Q_1| = 1.9 \times 10^{-7} \, \text{C} \)
13) A sphere with charge $+q$ is placed a distance d from an uncharged metal sphere. Of the four figures shown, which figure best represents the resulting charge distribution on the metal sphere?

a. Figure C
b. Figure A
c. Figure D
d. None of these
e. Figure B

The next two questions pertain to the situation described below.

An electric dipole has a separation distance $d = 1 \text{ mm}$. It is placed 2 cm from a fixed, positive charge $q = 9.7 \mu C$.

14) If $|\delta| = 0.21 \mu C$ what is the magnitude of the net force on the dipole due to the sphere?

a. $F = 0 N$
b. $F = 87 N$
c. $F = 1.8 N$
d. $F = 0.044 N$
e. $F = 4.3 N$

15) The dipole is released. In what direction will it travel?

a. It will not move.
b. It will move away from the charged sphere.
c. It will move toward the charged sphere.
The next three questions pertain to the situation described below.

Three charges are fixed in position as shown in below. Note, charges Q1 and Q3 are positive, charge Q2 is negative.

Q1 = \(2.4 \times 10^{-6}\) Coulombs
Q2 = \(-4.8 \times 10^{-6}\) Coulombs
Q3 = \(2.4 \times 10^{-6}\) Coulombs

4) What is the x component of the force on charge Q1 due to the other two charges?

a. \(F_{1x} = -0.0236\) N
b. \(F_{1x} = 0.00116\) N
c. \(F_{1x} = 0.00232\) N
d. \(F_{1x} = 0.00259\) N
e. \(F_{1x} = -0.0259\) N

5) What is the y component of the force on charge Q1 due to the other two charges?

a. \(F_{1y} = 0.0233\) N
b. \(F_{1y} = -0.0233\) N
c. \(F_{1y} = 0.0224\) N
d. \(F_{1y} = -0.0282\) N
e. \(F_{1y} = 0.0248\) N
1. A negatively charged rod is brought near (but does not touch) an electroscope as shown. Then, the scope is briefly grounded. Finally, the electroscope is disconnected from ground and the charged rod is removed. Regarding the whole sequence of three steps, which statement is **FALSE**?

![Diagram of an electroscope with a negatively charged rod being moved away.]

- a. Negative charges will flow from the scope to the ground.
- b. Negative charges will be induced on the scope when the rod is moved away.
- c. The leaves will repel each other when the rod is moved away.

2. Two point charges are placed on the \(x \)-axis as shown. If a positive charge is brought to the point \(P \), what is the direction of the net electric force felt by this charge?

![Diagram of two point charges \(Q_1 = +1 \, \mu \text{C} \) and \(Q_2 = -2 \, \mu \text{C} \) on the \(x \)-axis, with point \(P \) between them.]

- a. Along the negative \(x \)-axis.
- b. Along the positive \(x \)-axis.
- c. It depends on the magnitude of the positive charge at point \(P \).
6. Consider an uncharged spherical conducting shell as shown. If charges are transferred to it, which statement is TRUE regarding their behavior?

a. They will be distributed uniformly throughout the conductor.
b. They will spread on the inner surface.
c. They will spread on the outer surface.
The next five questions pertain to the following situation.

Three point charges are positioned on the vertices of an equilateral triangle as shown.

8. What is the magnitude of the net electric force F on the charge Q_3?

a. $F = 3.89$ N
 b. $F = 112$ N
 c. $F = 195$ N
The following situation pertains to the next three questions.

A positive charge, +3 nC is placed at +0.04 m on the x-axis. A negative charge, -3 nC, is placed at -0.04 m on the x-axis. We are interested in the electric force on a -2 nC charge placed at +0.04 m on the y-axis.

13. What is the direction of the electric force on the -2 nC particle?
 a. In the +x direction.
 b. In the -x direction.
 c. In the +y direction.
 d. In the -y direction.
 e. The force is zero.

14. What is the magnitude of the electric force on the -2 nC particle?
 a. 0 N
 b. 2.4 N
 c. 3.6×10⁻⁵ N
 d. 2.4×10⁻⁵ N
 e. 4.8×10⁻⁵ N
27. A metal box carries a charge $Q_M = +1C$. A polarizable ball that carries no net electric charge, $Q_1 = 0C$, is held in place with a rod so that it is located near the box. Which statement with regards to the force between the rubber ball and the metal box is correct?

a. There will be no force since $Q_1 = 0C$.
b. There will a repulsive force.
c. There will be an attractive force.

Check to make sure you bubbled in all your answers.
Did you bubble in your name, exam version and network-ID?
18. A sphere is hung from a light cotton string attached to a fixed support (t_1). A conducting rod with a net negative charge is made to touch the sphere (t_2) and then moved away.

Which direction does the sphere move at time t_3, when the rod is held nearby?

a. toward the rod
b. away from the rod
c. does not move
Another charge with mass \(m = 4.3 \times 10^{-17} \text{ kg} \) is added to the configuration at the origin. The \(+9\text{nC} \) and \(+3\text{nC} \) charges are held stationary, while the \(4\text{nC} \) charge is free to move.

24. What is the magnitude of the force on the \(4\text{nC} \) charge?

a. \(8 \times 10^{-9} \text{ N} \)

b. \(1.8 \times 10^{-8} \text{ N} \)

c. \(3.9 \times 10^{-8} \text{ N} \)