

Introduction

· Last Time:

Newton's 3 Laws & Gravitational Forces

- Newton's 3 laws tell us how to predict the motion of any body if
 we know the forces that act on it
- The examples we used were the simplest cases: Constant acceleration (which means constant force) Uniform circular motion Examples of the effects of gravitational forces
- Very complicated to apply in most cases!

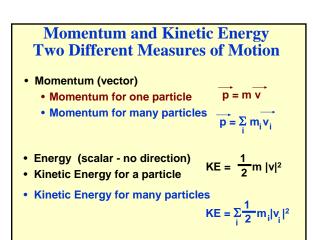
• Today: Conservation Laws

- The most useful conclusions without solving equations!
 Conservation of momentum: Follows from Newton's third law.
- (Chapt. 2 in March)
 Conservation of energy: The most important and useful law.
- (Chapt. 5 in March)
- MORE important than Newton's Equations! still valid in modern physics even though Newton's laws are not !

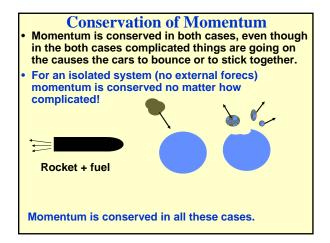
Conservation Laws Why they are so powerful

- Newton's Laws show how to describe the motion of every object
 - Determined by the FORCES acting on each object at a each time t.
 - Newton's 2nd Law gives the ACCELERATION at time t.
 - Acceleration determines how the velocity and position of the object will change at time t.
 - VERY complicated to apply to most problems !
- · What can be known without finding all the details?
- · Can any predictions of future behavior be made?
 - Yes.. conservation laws allow us to make important conclusions without knowing any details!

Conservation Laws Examples outside physics (May be not be exact like physical laws)

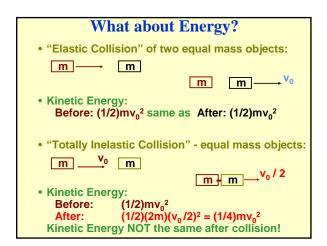

• Example in Lightman - Child's blocks

• Even if blocks disappear, there may be ways to detect them and show the number does not change


Money in your pockets

- · Conserved if you do not add or subtract
- Change in total can be related directly to income minus outgo
- Other

•



co mo	Conservation of Momentum discussed previously, Newton's 3rd Law (in njunction with the 2nd Law) implies that the total omentum of two interacting objects is conserved does not change in time).
• Air	Track Demos:
•	"Elastic Collision" of two equal mass objects:
m]—→° [m]
	$m \longrightarrow V_0$
•	"Totally Inelastic Collision" - equal mass objects:
m	v m
	$m m \rightarrow v_0 / 2$
	entum is conserved in both these cases, but the
final motions are quite different. How do we	
	erstand the origin of this difference?

Conservation of Momentum

- Exercise List examples
- For an isolated system (no external forces) momentum is conserved no matter how complicated!
- · Put list on board

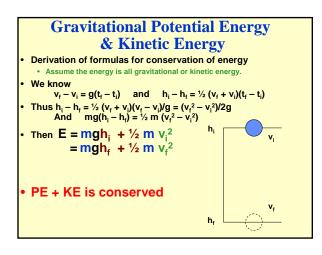
Conservation of Energy First Law of Thermodynamics

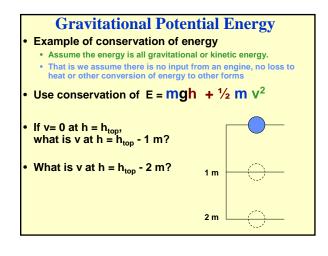
- Total energy is conserved this is even more basic than Newton's laws
- Holistic Law
- Energy comes in many forms. One form can be converted into another, but the total never changes!
- Kinetic energy: energy of motion Potential energy: Stored energy (due to gravity, compressed springs, batteries, chemical reactions,)
 Heat: Hotter objects contain more energy Other: Nuclear,
- (Later we will see that Einstein showed a different interpretation of this idea, but nevertheless the conservation law still applies!)

Conservation of Energy Exercise - List examples For an isolated system (no exchange with the rest of the world) energy is conserved no matter how complicated! Types of energy Put list on board

Conservation of energy (continued)

- The conservation of energy is one of the most important laws in physics - One of the most important for society as well!
- Energy is the engine of modern society
- Conversion of energy from one form to another is the "infrastructure" of nations
 - Oil to kinetic energy
 - Gravity to lights in your home
 - Sun's energy to food
- All uses of energy have some loss to friction that wind up as heat
- Reducing losses (for example by thermal insulation, efficient motors, ...) is a key goal for the future

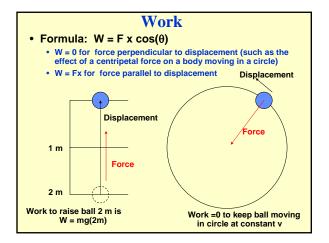

Gravitational Potential Energy How do we describe freely falling bodies in terms of energy?

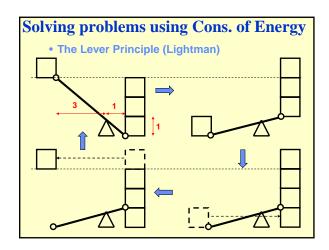

- · Initially, if released from rest, there is NO kinetic energy.
- · When the body falls, the kinetic energy increases.
- Where does this energy come from? What has changed? Only the position of the body with respect to the surface of the Earth!
- Define the gravitational potential energy of mass m near the surface of the Earth as:

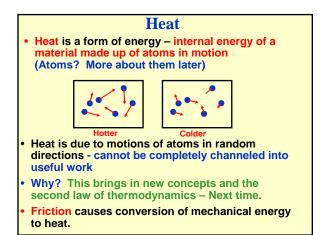
Potential Energy = mgh

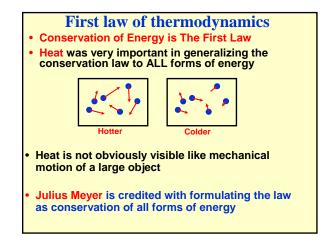
where **h** = height of mass above some reference point (*e.g.* floor)

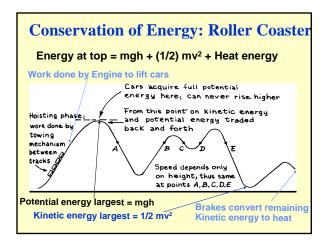
- As the mass falls, its potential energy is converted to kinetic energy. This energy can be recovered!
- Works for complex problems like roller coasters

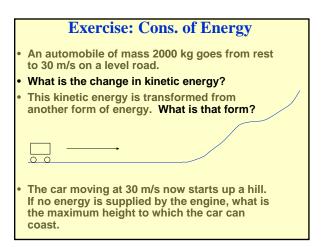


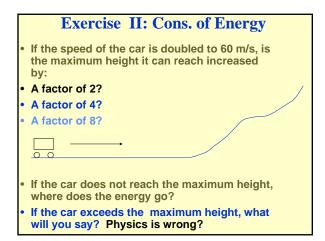

Other types of Potential Energy

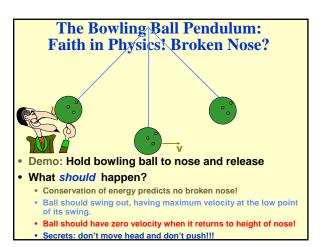

- · A compressed (or extended) spring For a high quality spring essentially all the energy required to deform it can be recovered - i.e., it is useful potential energy
- Twisted rubber band
- · Bending of the bow which transfers energy to the arrow

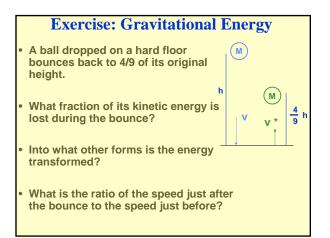


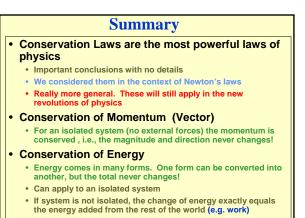

- · Work is the transfer of energy by force acting on an object that is displaced
- Work is a form of energy: conservation of energy means that the energy of a system increases by the amount of work done on it
- Example: it takes work to raise a body and increase its potential energy
 - · Work is needed to raise a roller coaster to the top
- Formula: $W = F x \cos(\theta)$
 - W = 0 for force perpendicular to displacement (such as the effect of a centripetal force on a body moving in a circle)
 - W = Fx for force parallel to displacement











Power

- Power = energy per unit time
- Unit: Watt = 1 Joule per second
- Light bulb typical 100 watts = 100 joules/sec Heaters, etc, quoted in kilowatts
- Often Energy is quoted in kilowatt hours = 10³ joules/sec x 3600 sec = 3.6 x 10⁶ joules
- (Costs about \$0.10 cost of 10 light bulbs for 1 hour)

Exercise related to Power • A 100 watt light bulb is on 24 hours a day • How much energy is used in a month? • E = 100 W x 24 hr/day x 30 days = = 0.1 KW x 720 hr = 72 KW-hours At \$0.10/ 72 KW-hours, this costs \$7.20. • (Also E = 100 J/s x 60 s/min x 60 min/hr 24 hr/day x 30 days = 100 x 60 x 60 x 24 x 30 J = 2.592 x 10 ⁸ J (not a practical scale!))

No free lunch!

Next Time

- The second Law of Thermodynamics
 - Entropy
 - The "arrow of time"
- Read
 - Lightman, Ch. 2