

Announcements

- Today Review before Exam I Homework 4 due
- Wednesday, October 1: Exam I Covers Chapters 1 - 5 of March; 1 – 2 of Lightman Development of science through classical physics (except electricity and magnetism and waves not covered)
- Monday, October 6: Solutions to exam; Continue Classical physics – Electromagnetism and electromagnetic waves

Nature of Exam

- Questions: True/false; multiple choice
- · Problems: Work out numerical answer
- Essay questions: Give answer in short paragraph
- · Equations are provided on cover sheet:

Nature of Exam

- Questions: Multiple choice; short written answers
- · Problems: Work out numerical answer
- Essay questions: Give answer in short paragraphs
- · Equations are provided on cover sheet:

```
 \begin{array}{l} \mbox{Formulas used so far in the course:} \\ x = \underline{x}_0 + \underline{x}_1 \qquad v = v_0 + at \qquad x = x_0 + \underline{x}_1 + \frac{1}{2} \ at^2 \\ \underline{v}_{sc} = (\underline{x}_c \cdot \underline{x})^T \\ \hline p = \underline{m} \underline{v} \\ F = ma \qquad a = v^2/r \qquad F = GMm/r^2 \\ KE = \frac{1}{2} \ mv^2 \qquad PE = \underline{mgh} \\ F^2 = (\underline{cont}) \ R^3 \\ Addisional Information: \\ Force: 1 Newton (N) = \underline{Kg} \ m/s^2; \ Energy: \ Joule (J) = N \ m; \ Power: \ Watt = J/s \\ Heat: 1 \ calorities = 1.00 \ m/s^2 or true at densy out Calorities (apind - 5.00 \ m/s^2) \\ \hline H \ condext{figure} = 9.00 \ m/s^2; \ Energy: \ Joule (J) = N \ m; \ Power: \ Watt = J/s \\ Heat: 1 \ calorities = 1.00 \ m/s^2 or true at densy out Calorities (2ardis (apind - 5.00 \ m/s^2)) \\ \hline H \ needed (a = 9.00 \ m/s^2) \ m \ ender (a = 9.00 \ m/s^2) \ m \ ender (a = 9.00 \ m/s^2) \end{array}
```

Overview of course (from Lecture 1)

- To discover what science (physics) is about
 - Is it objective discovery of facts about nature?
 - Is it human invention of ways to describe what we see around us?
 - What are the great ideas of science (physics)?
 - How does science (physics) affect our world view?
 - The approach we will take is to describe the conceptual structure of physics in a historical perspective (following the texts with additions)
 - How has physics evolved?
 - Revolutions in science in human thought
 - How has it affected world views?

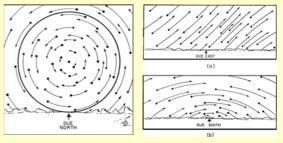
Role of Mathematics (various)

- The natural language of science is mathematics
 - The workings of nature appear to be described by simple laws
 - Mathematics allows laws to be written in succinct form
 - Mathematics allows the equations to be transformed to make bold conclusions and to make unambiguous tests of the laws
- Allows important applications to ordinary experience
 - Quantitative problems are an essential part of physics
 - In this course we consider simple but important example problems

Role of Physics in the "Big Picture"? A brief taste (from Lect. 2)

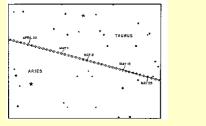
- " 'It struck me that the more we learn about the changes in human life after the 16th century' – when most scholars mark the onset of the modern world – 'the clearer it becomes that [the change] was unprecedented and radical' "
- "People began to value institutions such as private property, to question religion's public role, and to adapt a Newtonian, scientific world view"
- Viewed as regression by some a spiritual loss (Nietsche) – unleashing of unstainable capitalism (Marx) …
- Unquestionably an enormous effect on our lives Robert Pipin, The University of Chicago Magazine, August, 2003

Review -- 1


- What is Scientific Knowledge?
 - What questions are "scientific"
 - What statements are scientific? --- Examples
 - Feynman's answer: "The test of all [scientific] knowledge is experiment."
 - What are other types of knowledge? --- Examples
- How did our present definition come about?
 - What steps in history were particularly important?
 - Powers answer: "... no single idea has had a more profound or ubiquitous impact on what the human race has become, or what it has worked upon the face of the planet, than the vesting of authority in experiment."
 - When did this happen? What were other movements in human history that occurred in the same period(s)?
 - How did this happen? How did (does) science advance?

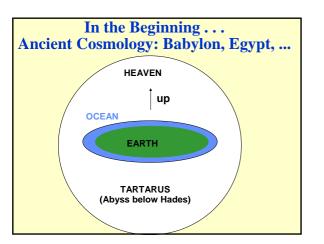
Review -- 2

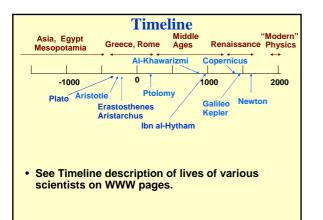
- What have people observed in the sky since long before recorded history?
- Sun, Moon, Stars, Planets
- Ancient Observations which are still useful!
- Ancient Cosmologies facts or invention?
- Problem of the Planets (Wanderers)
- The strange motion of the planets exemplifies two competing world views
 - Each view appears to be the product of a deep human desire to "know"
 - Astrology treats the motion as somehow related to life on earth leads to fortune telling, horoscopes,
 - Astronomy searches for explanations in simple laws leads to new science


What do we observe in the sky? Sun, Moon, Stars in eternal, regular motion

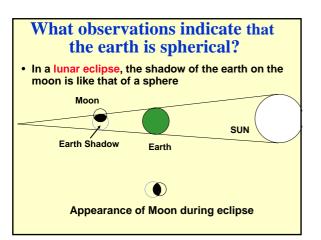
• From a point in the Northern Hemisphere, the stars appear to move as shown:

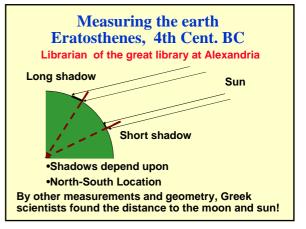
Motion of Sun, Moon, Planets along the "Zodiac"

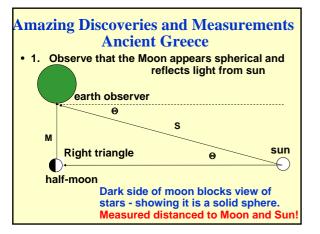

- · Sun moves through the constellations
- Observe directly by the position of the stars at sunrise and sunset

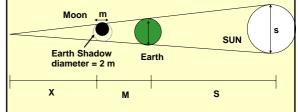

Problem of the Planets

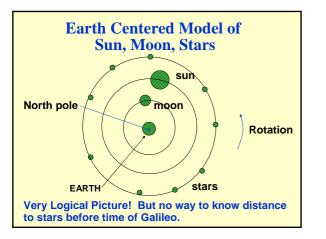

- The motion of each planet Mercury, Venus, Mars, Jupiter & Saturn - follows a different path at a different speed along the "Zodiac"
- Their speed varies and sometimes they move backward!



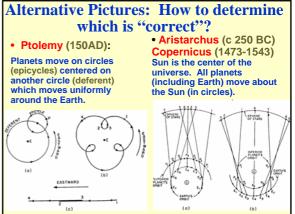


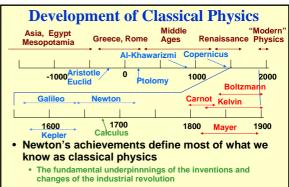






How large is the Moon? How Far?


- (also due to Aristarchus)
- In a lunar eclipse, the time the moon is in the shadow of the earth depends on the moon's size & distance.
- Observation: At the moon the earth's shadow is very nearly twice the diameter of the moon



Alternative Pictures of the Universe: How to determine which is "correct"? Earth centered model (Ptolemy ca. 150AD)? Sun Centered Model (Aristarchus ca. 250 BC and Copernicus (1473-1543)) Problem of the Planets - These tiny points of light moving in strange patterns in the sky lead to new understanding of physics - the "Copernican Revolution"

Review of Course -- 6

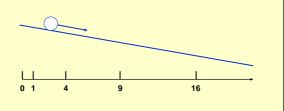
- Early Renaissance
- Copernicus: sun-centered system (early 1500's)
- Brahe: Accurate measurements of positions of planets (late 1500's)
- Kepler: Uses Brahe's data Kepler provides first accurate description of the motions of motion of planets (1609)
 - Planets move in elipses with sun at one focus
 - Kepler's three Laws for planetary motion
- The earth is just another planet moving around the sun! Profound impact upon our view of the universe!

- The deterministic world view of the "Modern History" starting around 1600
- Conservation Laws, heat, 2nd law

Review of Course -- 7

- Renaissance
- Galileo: Key figure of the scientific revolution that culminates with Newton
 - Experimental Method: Not just observation, but controlled experiments to test principles designed to apply in idealized cases
 - Motion of falling bodies, projectiles
 - Principle of superposition: (Galilean Invariance: Motion at a constant velocity does not change the laws of physics)
 - Principle of Inertia: (A body in motion will tend to stay in motion.)
 - Astronomical observation using telescope starting 1609 - 1610
 - Moons of Jupiter, ...

Galileo and Falling Bodies


- Galileo Proposed that all freely falling bodies fall with the same acceleration independent of their mass
- Using mathematics he showed this leads to expression x = 1/2 g t²
 - Difficult to test in Galileo's time
 - One of his brilliant ideas: Rolling on an incline is like "gravity slowed down"
 - But is this true? Does it really test the law that all bodies fall with the same acceleration?

Rolling Ball on Incline

• For equal intervals of time t, x increases in the ratios:

1:4:9:16:25:....

 This can be restated as the distance traveled during each interval increases in the ratios: 1:3:5:7:9:.....

Galileo Continued

- But the real contribution of Galileo were the general principles
 - Experimental Method: Not just observation, but controlled experiments to test principles designed to apply in idealized cases. Still the basic of the scientific method.
 - Principle of superposition: (Galilean Invariance: Motion at a constant velocity does not change the laws of physics) Fundamental consequence that there is no need to think of the earth at rest.
 - Principle of Inertia: (A body in motion will tend to stay in motion.) Same as Newton's first law.

Review of Course -- 8

- Newton put it together his ideas led to what we call "Classical Physics"
- Newton formulated the laws that describe motion in terms of forces and masses
 - Newton born the year Galileo died (1642)
 - Three Laws
 - Inertia: A body keeps moving in straight line unless a force acts on it
 - •2. F = ma
 - 3. Action/Reaction equal and opposite forces
 - Key new ingredient: force

Newton's Laws continued

- Key ingredient is forces must be specified
 - Examples: Falling bodies (F = mg) due to gravity; Circular motion (a = v²/R) implies a centripetal force
 - Universal Law of Gravity (F = G Mm/R²)
 - Apple, Moon, Planets obey the same laws!
 - Derived Kepler's laws from more fundamental principles.
 - Unites the motion of earthly and heavenly bodies. Profound impact upon our view of the universe!

Review of Course -- 9

- Conservation Laws Most compact, powerful laws of physics
- Conservation of total momentum (vector)
 Isolated system (no outside forces) has conserved
 momentum magnitude and direction
- Conservation of energy -- a holistic principle involving many types of energy
 - 1st Law of Thermodynamics
 - Types of energy:
 - kinetic energy (motion) KE = (1/2)mv²
 - Potential energy that can be recovered (e.g., Gravity near earth: PE = mgh)
 - Heat , other,
 - Total energy conserved in isolated system
 - Work is the transfer of energy by forces and displacement (W = Fx cos(θ))

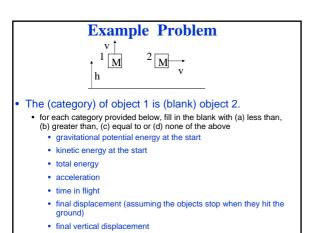
Review of Course -- 10

- 2nd Law of Thermodynamics
 - Very different in character from 1st law

In an ISOLATED system:

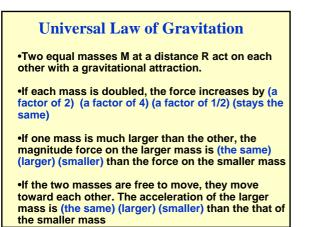
- The system naturally evolves toward more probable configurations
- The system evolves toward distributing its total energy equally among all its parts (conserving energy of course)
- Heat flows from hotter to colder bodies
- The system evolves toward decreasing order
- The system evolves toward increasing entropy
 The system's ability to covert work into heat is
- always diminishing

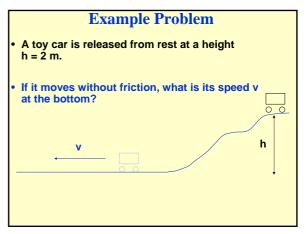
Conclusions:

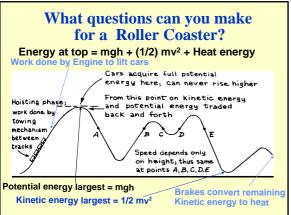

- · The universe is winding down heading toward "thermal death"
- The universe had a beginning
- The direction of time is determined by this inevitable, irreversible tendency
 There is a maximum efficiency for any heat engine that depends only upon the input and output temperatures: e = 1 - T_{em}/T_{em}

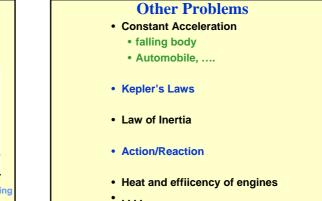
Sample Discussion Questions

- Compare and Contrast Aristotle's and Galileo's scientific methods:
 - Give one difference
 - Give one similarity
 - Point out a case in which they tended to come to different
 answers
- Give an argument to convince someone that the earth rotates on its axis rather than the stars revolving around a fixed earth.


Example Problem $\downarrow_{h}^{v} \stackrel{1}{\boxtimes}^{2} \stackrel{2}{\boxtimes} \stackrel{1}{\longrightarrow}^{v}$


- Sketch the path of each object until it hits the ground.
- · What principles does this problem illustrate?
 - Superposition of velocities
 - Principle of inertia
 - Newton's 1st law; 2nd law; 3rd law
 - · Law of gravity




Sample Problem

- A mass of 3 kg is swung in a horizontal circle attached to a rope of length 2m.
- If the speed of the mass is 10 m/s, what is the acceleration?
- Force on the mass due to the rope?
- If the rope were twice as long and the mass completed a circle in the same amount of time, would the acceleration of the mass be larger, smaller, or the same.
- What law(s) or principle(s) does this problem illustrate?

Impact of Science (Physics)

- Scientific Method (Galileo, Islamic Scientsists)
 - Find simple, general laws
 - Use mathematics to establish consequences of the laws
 - Carry out controlled experiments to test if the laws describe nature
- Classical Physics
 - Dominated by Newton's ideas
 - Three laws of motion; Law of Gravity
 - Provided ideas for models of the universe and all knowledge in 18th 19th Centuries

• Enormous impact upon our "world view" - how we view the universe and our place in it