Lecture 10 Maxwell and Electromagnetic Waves

Light

- At first sight there is NO connection between light and electricity and magnetism.
 Light is not affected by magnets or electric forces, etc.
- Light is generated by electric discharges, but this appears to be just a conversion of energy from one form to another
- One of the great triumphs of science to show that two things that appear so different are in fact described by the same simple laws!

What was known about the Speed of Light by the 1800's?

- The first measurement.
- Ole Roemer (1644-1710), a Danish astronomer, found in 1675 that the observed orbital period of Jupiter's moons varied with time.
- Newton's theory predicts the orbital period to be a constant.
- Should we conclude Newton's theory is wrong?
- No. Instead the evidence for Newton theory is so strong that Roemer's observation was used to say something about light!

Lecture 10 Maxwell and Electromagnetic Waves

Electricity, Magnetism, Gravity		
 Recall electric forces are similar to gravitational forces 		
 Electrostatic Law) 	$F_{E} = K q_1 q_2 / R^2$	(Coulomb's
Gravity:	$F_{G} = G m_{1}m_{2} / R^{2}$	(Newtons Law)
 The same questions apply to gravity: Do gravitational forces act instantaneously between two bodies? This was a problem for Newton! 		
 Are there gravitational fields? 		

Electric and Magnetic Fields

Demonstrations - Interpretations

- Fields are created by charges and the fields cause forces on other charges.
- 1. Coulomb's law relates electric field to charges
- 2. Ampere's law (Generalized)- moving charge or changing electric field generates a magnetic field
- 3. Faraday's law: changing magnetic field generates an electric field
- Demonstrations show the effects but can you "see" the fields

James Clerk Maxwell

Born Nov. 13, 1831, in Edinburgh, Scotland
 the year that Samuel F.B. Morse first conceived the telegraph

• Died Nov. 5, 1879, in Cambridge England

 the year that Thomas Edison was doing his first early work to invent the light bulb.

Life

- Child of wealthy family
 Attended Edinburgh Academy,
- Edinburgh University and Cambridge University
- Wrote first paper at age of 14
- Cavendish Professor 1871-1879
- Great physicist
 - Revolutionary work in electromagnetism and theory of gases.
 - Wrote the final chapter of classical physics

Lecture 10 Maxwell and Electromagnetic Waves

Electromagnetic Wave • Electromagnetic wave in vacuum (free space) • Changing electric field generates magnetic field and vice versa Direction of motion Electric Field Magnetic Field

