

- Introduction

 Last Time: Matter Waves

 Theory: de Broglie (1924) proposes matter waves

 assumes all "particles" (e.g. electrons) also have a wave associated with them with wavelength determined by its momentum, $\lambda = h/p$.

 Bohr's quantization follows because the electron in an atom is described by a "standing electron wave".

 Experiment: Davisson-Germer (1927) studies electron scattering from crystals see interference that corresponds exactly to the predicted de Broglie wavelength.

 The Schrodinger equation: Master Equation of Quantum Mechanics: like Newton's equation F=ma in classical mechanics.

 But what waving?
- **Today:** Probability is intrinsic to Quantum Mechanics; Heisenberg Uncertainty Principle

Is This Like a Classical Wave?

- Yes --- And No!
- A classical wave also spreads out. The more localized the region in which the wave is confined, the more the wave spreads out in time.
- Why isn't that called an "uncertainty principle" and given philosophical hype?
- Because nothing is really "uncertain": the wave is definitely spread out. If you measure where it is, you get the answer: "It is spread out."
- This is different in quantum mechanics where each particle is not spread out. Only the probability of where the particle will be found is spread out.

Example of Probability Intrinsic to Quantum Mechanics

- Even if the quantum state (wavefunction) of the nucleus is completely well-defined with no uncertainty, one cannot predict when a nucleus will decay.
- Quantum mechanics tells us only the probability per unit time that any nucleus will decay.
- Demonstration with Geiger Counter

Not everything is uncertain! II

- The Schrodinger wavefunction Ψ for a particle is precisely defined for each quantum state.
- The function Ψ²(r), the probability to find the particle a distance r from the nucleus, is welldefined.
- The energies of quantum states of atoms are extremely well-defined and measured to great precision - often measured to accuracies of 1/1,000,000,000 % = 10⁻¹²
- But any one measurement will find an electron in the atom at some particular point - the theory only predicts the probability of finding the electron at any point

Summary

- Particles have wave character!
- Schrodinger's Equation predicts the wave function Ψ with complete certainty
 - Agrees with all experiments up to now
- The meaning of Ψ² is the probability that the particle will be found at a given place and time
- Heisenberg showed that quantum mechanics leads to uncertainty relations for pairs of variables $\Delta p \ \Delta x \ge \hbar/2$ $\Delta E \ \Delta t \ge \hbar/2$
- Quantum Theory says that we can only measure individual events that have a range of possibilities
 - We can never predict the result of a future measurement with certainty
 - More next time on how quantum theory forces us to reexamine our beliefs about the nature of the world