Course Overview

The framework we will adopt in this course wi# that introduced by Isaac
Newton in the 1% century. This framework remained the standatiance until the
20" century when fundamental changes were neededstuible the complete nature of
space, time, and matter. In particular, the thebspecial relativity proposed a constant
speed of light that led to a reformulation of tleure of space and time. The theory of
guantum mechanics was created to describe the interactions of eléangparticles, such
as electrons and photons, leading to a descripfiomatter that included both particle and
wavelike aspects. In this course, we will restoigtselves to describing macroscopic
objects moving at relative velocities that are $mwih respect to the speed of light, so
that Newtonian mechanicsal we need to accurately describe the physics.

In particular, we will present Newton’s laws whiicttroduce the new concepts of
force and mass that are needed to describe tlmadaif macroscopic objects. Indeed,
Newton'’s laws establish the mechanical world vibat forms the basis for the scientific
revolution of the 1 century. In particular, he introduced a univefeate of gravitation
that he claimed applied to all objects having mas$s.then demonstrated that he could
relate the motion of the Moon in its orbit aboud tarth to the falling of an apple to the
ground here on Earth. The deep significance sfdemonstration was that, for the first
time, a connection was made between the motionsdrfiary things on the Earth and the
motions of heavenly bodies. Prior to Newton, tlea¥ens and the Earth were treated
entirely separately and differently. Newton showleat the laws that apply here on Earth
extend to the Heavens.

We will then introduce other important quantitegh as energy, momentum and
angular momentum that are commonly conserved ariaty of situations. We'll close
with a brief study of oscillatory motions, wave moots, and fluids.

1. oneDimensional Kinematics

A) Overview

This course is concerned with classical mechattiesstudy of the forces and
motions of macroscopic objects. We will begin watstudy okinematics, the
description of motion, without regard to its cause particular, we will define the
concepts otlisplacement, velocity andacceleration that are needed to describe motion.
We will initially restrict ourselves to motions ane dimension. We will use these
definitions to demonstrate how to obtain thange in position from the velocity and the
change in velocity from the acceleration. We will close this unithva discussion of an
example of a particular motion, that of constarteseration.



B) Displacement and Average Velocity

To discuss motion in classical physics, we begth two quantities,
displacement andvelocity. These quantities are not unfamiliar to yoon $ure you
already have a working knowledge of the relatiopdigtween displacement and
velocity. If it takes you three hours to walk siXes you can figure out that your average
velocity during that walk was 2 miles/hr by simjpliyiding the distance you walked by
the time it took.

In this course, you will find that many of the wisrthat represent the quantities of
physics will be very familiar words. It is imparit to note, however, that these words all
have very precise meanings in physics, whereagdryday language, these words are
often used to mean many related, but differenbghi Therefore, it is important that we
start right away with careful definitions of ourres. Most often, these definitions will
obtain their precision through their expressioteimns of mathematics.

To illustrate this point, we introduce an argunsamtade by the Greek philosopher
Zeno to prove that it is impossible to move frormegointA to another poinB. His
argument goes as follows: clearly before we cameno pointB, we need first to move
to pointC which is halfway between poingsandB. Sounds true enough, however, this
argument can be repeatadlinfinitum. i.e., once aC, we would need to move first to
point D which is halfway between poin&GandB. You get the drift, 'm sure. We will
need to make an infinite number of moves to ggiiat B.

What is Zeno's point? It certainly mot to prove that motion is impossible; we all
know that is not true. In fact, the reason thastharguments are called “paradoxes” is
that what seems to be a reasonable argument leadsoinclusion that we know is false.
Zeno initiated these arguments as ways to investite nature of space and time.

How do we resolve these paradoxes? Clearly thielggm lies with the notion of
infinity. Mathematics can help us. We know, faample, that an infinite series can
have a well-defined sum. This sum is defined imseof a limit which is the key concept
of calculus. Indeed, we will soon find that trsewf calculus will be central to the
definition of velocity. For now, though, we’ll begby defining theaverage velocity of
an object within some time intervat to be equal talx, the distance it has travelled
during that period divided by the time it takes.
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We can represent this definition graphically asvahin Figure 1.1. On the
vertical axis we plot the displacementwvhich is defined to be the distance travelled
from some fixed origin, while on the horizontal sxive plot the timg from some fixed
time defined to bé= 0. If we choose some time interval definedhmy times; andt;,
we see the corresponding displacemengmdx; and that the average velocity is just the
slope of the line connecting the initial and fipaints on the graph.
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To illustrate the use of the
average velocity, suppose someone
calls your cell phone while you are
driving and asks “what’s up?”. You
might say “I left town half an hour
ago and I'm heading east on the
interstate”. If you wanted to be
more specific you might say “l am
35 miles east of town and I'm
driving east at an average speed of
65 miles per hour.” From this
information your friend could do a y
simple mental calculation to predict Figure 1.1 ! !
that one hour from now you will be A plot of the displacementas a function of timé
another 65 miles farther east, which Theaverage velocity for a time interval(t t;) is
would be about a hundred miles eastjjjustrated as the slope of the line connecting the
of town. points on the curve at those two times.

( 1:my is the slope
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What your friend really did to make this estimaizs to solve the following
kinematic equation in her head.
X(At) = Xo + (Vayg [A)

The translation of this equation into English iattilour position at a timét after you

start is just equal to your starting position, @a4,, plus the additional distance you went
during time4t. This last piece is just your average velocitytiplied by the elapsed

time. This last calculation assumes that youraye velocity does not change in the
next hour. We will discuss how to describe moimmhich your velocitydoes change

in the next section

Before we proceed any further, a remark aboususiin order. Although the
velocity used in this example was given in milestpeur, we will adopt for the most part
in this course, the Sl system of units in whichoeél is measured in meters/second.
Converting between these units is easy; we simgle o multiply by “one” until the
units are right. For example in this case, weraailtiply 65 miles/hour by 1609
meters/mile by (1/3600) hours/second to obtairrdisalt that 65 mph is equivalent to 29
m/s.

C) Instantaneous Vel ocity

In the last example, we calculated the predictstadce the car would go during
a specified period of time, assuming that the ayeekeelocity during that time did not
change. You know this assumption is not always;tsometimes you may speed up to
pass a car, resulting in an increased averageityetocyou may have to slow down due
to traffic, resulting in a decreased average véfoci

Therefore, to discuss all kinds of motion, we wiled the ability to figure out
both the displacement and the velocity for anyansin time, not just the average over
some time interval.



We can visualize the procedure for finding
the instantaneous velocity by starting with the
displacements time plot shown in Figure 1.1
and then bringing the final and initial times close
and closer together until they are infinitesimally X
close together. As we do this the line connecting
the points becomes the tangent to the curve as
shown in Figure 1.2! In other words, the
instantaneous velocity at some time is just the
slope of the tangent to thxesst curve at that
point. The slope of this tangent line is exactly
equal to the derivativex/dt at that time!

1-(;) is the slope

We can now see the simple relationship ; >

betweerdisplacement andvelocity: The { t
instantaneous velocity at a particular titig Figure 1.2
defined to be the time derivative of the A plot of the displacementas a function of timé
displacement at that time. Theinstantaneous velocity at timet is illustrated
. dx as the slope of the tangent to the curve at time
dt

We can construct a graph of the instantaneous iglag a function of time by finding
the slope of the correspondirgst graph at each timeas shown in Figure 1.3.
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Figure 1.3
The instantaneous velocity at any time is obtaimedifferentiating the displacement at that time.

This relationship iglways true, no-matter how strangely the displacement beay
changing with time. This relationship is the defom of instantaneous velocity. We
were led to this definition of the instantaneou®eiy by a natural refinement of the
concept of the average velocity and we have digeaveas predicted, that the calculus (in
this case, the derivative) is needed to carefudfyne this kinematic quantity.



D) Position from Velocity

We've just defined the instantaneous velocityraet as the time derivative of
the displacement at tinte Therefore, if we know the displacement as ationoof time
for some object, we can calculate its velocityrat ame by simply evaluating the
derivative of the displacement function at thatetim

Suppose, on the other hand, that we know the iglas a function of time; what
can we say then about the displacement at any tilnge®ems like we should be able to
use the inverse operation to go the other way twkashould be able to evaluate the
integral of thev vst graph to find the displacement as a functionratti

We know the integral can be represented grapkiealthe area under the curve.
Therefore, we expect the displacement to be relatéte area under thevst graph.
We can verify this expectation for the special aafseotion with a constant velocity as
shown in Figure 1.4. In this case the area urfteectirve from 0 to timeis simply equal
to the magnitude of the velocity times the timeNote that the integral needed to find
the displacement at timas the definite integral frorh=0 tot =t.
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Figure 1.4
For motion at constant velocity, the displacemara &unctin of time can be obtained by integrathng t
constant velocity over time to obtain a displacentleat changes linearly with time..

To obtain the general equation that determinesligfdacement from the velocity,
we actually need to be a little more careful. Wihatve really shown so far is that the
change in displacement during a time interval (for exaeplto t;) is equal to the integral
of the velocity between these initial and finalésn We have no way of knowing where
the particle was at any particular time, say=a0. The velocity tells us how the
displacement changes; it can't tell us where itethfrom. That information must be
given to us independently. Consequently, we whéegeneral expression in terms of the
definite integral of the velocity fromto t; and the value of the velocity tat

l:f
X(ts) = x(t) = [v(t)dt
t

This expression is completely general and will wiaikany velocity function



E) Acceleration
There is one more important kinematic quantity e need to discuss. Namely,
just as velocity tells us how fast the displacem&wrhangingacceleration tells us how
fast the velocity is changing. In other words, &&eion is the time rate of change of
velocity; acceleration is the measure of how maeyens per second the velocity changes
in a second. The units of acceleration are theeafweters per second per second.
_av
a=s—
dt
Figure 1.5 shows a plot of the velocity of an obgeca function of time. The value of
the acceleration at any given time is just equ#héoslope of this curve at that time.

Acceleration
dv(t)

dt

Velocity
w(t) air)=

\ /
\ S ow L

Figure 1.5
The acceleration of an object at any time is oleghiny differentiating its velocity at that time.

In the same way that the change in displacemanbedound by integrating the
velocity, the change in velocity can be found kggnating the acceleration.

Before going any further, we must issue here animgrabout a common
confusion between everyday language and preciganiatic definitions. The evil word
here isdeceleration. I'm sure practically all of you associate decafimg with “slowing
down”. We have just defined acceleration asitne rate of change of velocity. The
velocity is asigned number as is the acceleration. The sign of the veldait§cates its
direction (either forwards (positive) or backwafdegative)). If a car is moving in the
positive direction and slowing down, then its aecafion is negative. However, if the
car is moving in the negative direction and slowdlogvn, then its acceleration is
positive! Therefore, the concept of “slowing down” is tloé same as that of “negative
acceleration”. The safest way to proceed here jigsionot use the word deceleration
when dealing with kinematics problems. Acceleraiare either positive or negative,
depending on whether the velocity, a signed numbéncreasing or decreasing.



F) Constant Acceleration

The equations we presented in the last sectiothéoacceleration as the time rate
of change of the velocity and the change in vejoad the integral of the acceleration are
totally general; they are true always!

We'd like now to use these general equations tiveléhe specific equations that
hold for a special, but important case, namely dfatotion at constant accel eration.
We start with the defining property, that the aecation is a constant. We can integrate
this constant acceleration to find the change Inory. The result of this integration is
that the velocity at any given time is simply equoathe initial velocity plus the
acceleration multiplied by the elapsed time.

v(ts) =v(t) +(@lts —t))
This equation is often written in a more compactfo
V=V, +at
In writing this equation, we denote the velocitytta initial time by, and the variable

really means the elapsed titae t. We see that the velocity changes linearly wittet
as it must since the acceleration is constant.

Now that we have the velocity as a function ofdjiwe can integrate once again
to find the displacement as a function of time.

t
X = Xg + [ (v +at)dt
0
In this case we see that the displacement changebatically with time.

X=Xo +Vot + S at?

We have now obtained expressions for the velocitydisplacement as a function of
time for the special case of motion at constanelecation. We can eliminate the time
from these equations, for example by solvingtfiorthe velocity equation and
substituting that expression back into the disptamet equation to obtain a new
expression that directly relates the velocity ® displacement.

2a(x—Xg) = v2 —vg

In particular, we see that the displacement ine@®as the square of the velocity.



Main Points

* Definitions of Kinematic Quantities
Displacement  x(?)

o _ dx(t

Velocily is the time rate of Velocity w(t) = ()

change of displacement dt

Acceleration is the time rafe i dv(l)
cceleration is e Acceleration  a(t) =

of change of velocity dt

* Obtaining Displacement and Velocity from Acceleration

l':_."
Displacement is the infegral  Displacement  X(f ) —x(t,) = IV{I) dt
of the velocity over time ] ;.

t

Velocily is the fntegral of i S 5

the acceleration over ime Velociy v(:f) = "{"":‘) = _[a{r) dt
L

* Special Case: Motion with Constant Acceleration
The velocily is obiained by

infegrafing the consiant
acceleration over ime

The displacement is
obiained by infegrating the
velocily over time
Acceleration

Displacement Velocity

1
x=x, +vt+—at v=v +at @ = constant
2 i
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