2. Two Dimensional Kinematics

A) Overview

We will begin by introducing the concept of vastthat will allow us to
generalize what we learned last time in one dinoenms two and three dimensions. In
particular, we will define vector addition and swlation and relate the component
representation of a vector to the magnitude argtton representation.

We will then introduce one physics example, nantedydescription of free fall
near the surface of the earth as motion of consizggleration in the vertical direction
and motion at constant velocity in the horizonia¢ction. We will use these
descriptions to calculate some properties of ptigemotion. Finally, we will use the
principle of superposition to relate the descripsi@f projectile motion in two different
reference frames.

B) Kinematic Definitions in Three Dimensions

To this point, we have restricted ourselves szassions of motions in one-
dimension; we have defined velocity agdii and acceleration aw/dt. How do we
generalize these definitions to more than one dgioe® The generalization we make is
most easily understood in terms of Cartesian ctnatds. Figure 2.1a shows a Cartesian
coordinate system, with the mutually orthogonagdiions labeled, y, andz. To
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A point P is specified in a Cartesian co-ordinate A point P is specified by its displacement vector
system by its components §, 2). whose Cartesian coordinates atgy( 2)

identify a pointP in this space, we can specify its three co-ordsétg,z). These co-
ordinates represent how far the point is from thgio in thex, y, andz directions. If we
draw an arrow from the origin to the point, as showFigure 2.1b, we can define this
arrow as thelisplacement vector that locates the point; the coordinatey,¢) are called
the components of the displacement vector in yatesn. With this definition of the
displacement vector, it is natural to define theaponents of theelocity vector and the
acceleration vector similarly.
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With these definitions, we can see that everythweglid last time for one
dimension X) is just repeated for the other two dimensignandz). For example, we
can immediately write down the equations for athponents for motion at constant
acceleration.

X= Xo +Voul + 2 agt? Y= Yo +Voyt +2ayt? 2= 74 +Vgt +1agt?

We can formalize this generalization from one disien to three dimensions by defining
these kinematic quantities, displacement, velcaity acceleration agctor quantities.
For example, we can write down a single equatiornhe velocity vector as a function of
time for the special case of constant acceleration.
V=V, +at

The “arrow” notation is apt here since it indicatieat, like an arrow, a vector has both a
length and adirection. The length of a vector is also called its magigtand is often
represented as the absolute value of the vect@s.sliglevector equation is equivalent
to the three scalar equations we wrote down earlier

Vy = Voy T+ ayt Vy =Voy +ayt V, = Vg +ayt

We have introduced these vectors in terms of opeesentation, their Cartesian
components. In fact, you should think of theegors as the primary object. They can
have several different scalar component represengat In the next section, we will
support this claim by introducing some importardagarties of vectors that we will use
often in this course.

C) Vectors

You know how to perform many operations on scalantities. For example,
you know how to add, subtract, multiply and dividenbers. You also know how to
differentiate and integrate scalar functions. We @efine similar operations for vectors.

For example, Figure 2.2 shows B
the procedure for defining the sum of
two vectorsA andB. Namely, ths sum
is defined to be another vectGmwhich
is obtained fromA andB using the
following prescription: place the tail of
vectorB at the head of vectdr and then
draw the arrow from the tail of vectér
to the head of vectd. Note that the
vector sum depends on the directions c
the vectors as well as their magnitudes
For example, if you were to rotate vectc
B through some angle, its magnitude
would not change, but both the directiol.
and the magnitude of the vector s@m
will change!Clearly the magnitude of
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Figure 2.2

The sum of two vector& andB is defined

to be another vectd formed by placing the
tail of B at the head oA and drawing a
vector from the tail oA to the head oB.



the vector sun€ is not equal to the sum of the magnitudes of vectoedB.

You must be thinking that this is a pretty strapgescription to be given the
name of something simple like addition. This prggmn becomes more clear if we look

at the Cartesian components of the vectors as shotigure 2.3.
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The components of the vector s@hare equal to the sum of the components
of the vectors\ andB.

Aha, there is a method to this madness! It's dleat this definition of vector addition
gives the result that the Cartesian components|giatjul!

Cy = A+ By Cy =Ay+By
With this definition of vector addition, we see wan also write a general expression of
any vectorA in terms of its y
Cartesian components and the unit " A a :
vectord(i, j,k)in the &, v, 2) A=Ai+A4,j+A4k
directions, as shown in Figure 2.4.
Here we have used the fact that
multiplying a vector by a scalar is
the same as multiplying each of its A 5
components by the same scalar,  UnitVvectors j ' 4
which simply changes its length.  |i|=|i|=[¢[=1 ; R
Multiplying a vector by a negative i : x
scalar reverses its direction. / vt

Figure 2.4
The vectolA represented as the vector sum of the product
of its components and the corresponding unit vector



The Cartesian component representation of a vecsocommon representation,
but certainly not the only one. For example, amecan also be specified in spherical
components, in which the length of the vector dredangles describing its orientation are
used to specify the vector as in Figure 2.5awmdimensions, the orientation of a
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Flgure 2.5a . . . Figure 2.5b
The representation of a 3-dimensional The representation of a 2-dimensional
vectorA in spherical coordinates vectorA in polar coordinates

vector can be specified by the anél# makes with the-axis as shown in Figure 2.5b..
Using trigonometry, we can determine completelyrtiation between the Cartesian
componentsAy, Ay) and the polar components, (6).

In all cases, though, you should think of the gedself as an object — the arrow.
The different coordinate systems we invent aredifstrent ways of describing this
object in terms of scalar quantities.

D) Example: Free Fall (gravity)

We will now return to do some physics by considg@an example of motion in
three dimensions with constant acceleration, natmelythrowing of a ball across a room.
Once the ball leaves our hand the only force aaimg is gravity. We will learn more
about gravity in a few units — for now the onlyrthiwe need to know is that, near the
surface of the earth, any object under the infleesfgust gravityi¢e., in free fall) will
experience the same downward acceleration: of 88 rit is customary to refer to the
magnitude of the acceleration of gravitygas

Figure 2.6 shows the familiar parabolic trajectfmijowed by the ball once it is in the air.

Figure 2.6
The parabolic trajectory followed by a thrown ball



Before attempting to describe this motion usingrew 3D kinematics equations we
need to define our coordinate system. It is custgnapick they axis to point vertically
upward and the& axis to point horizontally in the direction of ttleow. With this choice,
our kinematics equations simplify considerably lagven in Figure 2.7. Since the

Motion with Constant Acceleration
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Figure 2.7
The kinematic equations for a ball thrown acrogsrdom.

acceleration is only in they-direction,a, anda, are zero. Therefore, the velocities in the
x andz directions cannot change; the motion in thesectiomls is just motion at constant
velocity. Since we chose, to be zero, we have no motion along the z direciioal.

The motion of the ball will be restricted to tkkg plane; we have reduced the problem to
a two-dimensional problem. Indeed, we might as wietiose the initiat position &) to

be zero which results in these simplified equations

ay, =0 Vy = Vpx X = Xg + Voxt

ay =—¢ Vy =Voy — 0Ot y:yo"'voyt_%gt2
Before we use these equations in a calculatios, fiest make a few observations. First,
note that there are minus signs in all equationsradnappears. The explanation is
simply that the acceleration due to gravity is dosrd, in the ¥ direction, and we
always take the value dfitself to be positive sincg represents the magnitude of the
acceleration, which we know to be 9.8 mBecond, note that tkecomponent of the
velocity is constant — it never changes from iahvalue. Last, but not least, note again
that the equations for theandy components of the motion are totally independent —
neither one cares about the other. We will see Huairthis independence has important
implications.



E) Example: Soccer Ball Kick

We will now use our knowledge of the motion ofaect in free fall near the
surface of the earth to make a calculation. Suppgos kick a ball off the ground at an
angle@with an initial speed,. How far away will it land?

The equations we developed in the last sectiaadir reflect the fact that we
have chosen thgaxis to be up and theaxis to be in the direction of the kick. To make
things even simpler, lets kick the ballta® and choose the origin of our coordinate
system to be at the initial position of the balltsatx, =y, = 0. We now have equations
for all three quantities that change as a funadibiime (X, y, and vy).
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We want to determine the horizontal distance thettzavels before hitting the ground,

call it D. Suppose the ball hits the ground at tirsd;. The distanc® then is really just

thex position of the ball at time=t;. Therefore, we use thxeequation to tell us th& is

just equal to the product of the tim@nd thev,, the x-component of the initial velocity.
X =Voxts

Therefore to determin®, we must first determing andvg,. How do we do that?

We can certainly determing, from trigopnometry. =
Namely, all we have to do is to decompose theaintelocity 0
vector into its Cartesian components as showngnrgi2.8.
Since these components form the sides of a rigdrigle whose ,
hypotenuse is equal tg, the magnitude of the initial velocity, !
we see that: . W

Vox = Vo COSH Voy = Vo sing 0:

Ya

Since both/y and&are given in the problem statement, we now == == >y

know bothvy, andvgy as well. The only remaining task is to Vo,
determinet, the time the ball stays in the air. Since weehav  Figure 2.8
equation fory as a function of we can just solve this equation  The decomposition of

for the times at whicly = 0. the initial velocity
O=vgyts = % gt% vectory, into its
Since this is a quadratic equation, we will findtaolutions: componentsy,, andv,,
2v,
ty =0 ty = oy
g

These are the times at which the height of thevbadl zero: one is when the ball was
kicked ¢; = 0), and the other is when the ball landed @vo,/g).

Finally, we just plug this last value frin our equation to determine that the
distance the ball travels in the air is proportidoahe product of th& andy components
of the initial velocity and inversely proportiortal the acceleration due to gravity,

2V V
D= oxVoy
g



F) The Range Equation

When we solved the problem in the last sectiorfomad that the distance the ball
travels was proportional to both, andvy,. It's always a good idea to check your results
to see if they make sense. .

If we increasery the ball moves further along tlelirection in a given amount of
time. If we increasey, the ball will be in the air longer and will travielrther for any
given velocity in thex direction. This all makes sense, the catch isftrea given initial
speedvy, bothvy, andvo, depend on the angle at which the ball is kick€terefore, an
interesting question is: for what angle is thigahgeD a maximum? How would we go
about making this calculation? The first stepisl¢termine a general expression for the
distanceD in terms of the anglé. We can then examine this expression to determine
the angle that maximizds.

We’'ll start with the expression f@ that we obtained in the last section and write
bothvox andvgy in terms ofvp and 8.

B 2v§ cosdsinég

g
We see thab is proportional to the product of #land co®. We can simplify this
expression a bit further by realizing the producindand co#is proportional the
sin(26) to obtain the usual form of the range equation.

D

B vg sin268

g
Figure 2.9a shows a plot of the rarigy@s a function o#. We see thdD reaches its
maximum value whed@= 45’. Figure 2.9b shows trajectories for differeniues of 6.
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Figure 2.9a Figure 2.9b
A plot of the rang® of a kicked soccer ball Trajectories for different angles made by the
as a function o#), thae angle the ball’s initial ball's initial velocity vector and the
velocity vector makes with the horizontal. . horizontal.. .

We see that the range for complementary anglégisdame and that the maximum range
is indeed obtained whefi= 45",

G) Superposition



We have already seen that thendy equations of projectile motion are
independent. In practical terms this means thab#éhavior of a projectile in the vertical
direction is the same no-matter how fast it is mgvn thex direction, and vice versa. A
bullet shot horizontally out of a gun will take th@me amount of time to hit the level
ground as a bullet dropped from the same height.

Therefore we can consider the motion of the kidkakito be the superposition of
two simpler motions, the first being that of a bathving vertically with constant
acceleration, and the second being that of a baimg horizontally with constant
velocity. We can actually see this superpositiama simply consider a single motion as
viewed from two different reference frames. Foaraple,

If a man throws a ball vertically upward, we kntive ball will go straight up and
then straight down, all the time moving with comstacceleration of 9.8 nf/pointed
downward. Now suppose this man is sitting in antvehile the train is moving with a
constant speed past an observer at a station. Wilhae see? Well, if the train is really
moving with constant speed, then the man on the tnaist see exactly what he saw
before; the ball goes straight up and returnsd¢dibnd. The speed of the train makes no
difference, as long as it's constant. What doesothserver at the stations see? He can’t
really see the same thing. Figure 2.10 showsr#jectory of the ball as seen by the
observer on the ground. He does not see the balihgaly straight up and down!
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Figure 2.10

The trajectory of a ball thrown straight up by amaa rest on a train

.moving at constant velocitywith respect to an observer on the ground. In
the timet it takes the ball to go stright up and down withpess to the

man on the train, the train has travelled a distafic=vAt. The ball is
always diretly above the man on the train and tioeeshppears to have the
trajectory shown to the observer n the ground.



He sees the train moving so that the horizontsitjpms of the ball when it leaves
the man’s hand and when it returns are separatégebgistance the train travels during
the flight time of the ball. In fact, what he seée¢he combined motions of constant
acceleration in the vertical direction and constestbcity in the horizontal direction.
What he sees is exactly the trajectory a soccémtmalld have if it were kicked with an
initial velocity such that its vertical componengng the initial velocity of the ball with
respect to the man sitting on the train and it$zootal component were the velocity of
the train with respect to the observer at the@tati

The amazing conclusion we take away from thisyamis that projectile motion
can be explained as simply free fall as viewed feomoving reference frame!

For example, in this case, we can predict whatritha at the station will see by
combining the information of what the man on tterrsees with the known motion of
the train. In particular, we can write a vectquation that relates the velocity of the ball
as measured by the observer at the station toelloeity of the ball as measured by the
man on the train.

Vhall —wrt—ground ~ Voall —wrt—train +\7train—vvrt—ground
This vector equation relates observations in tvifeidint reference frames that are
moving relative to each other, and will be the ¢ogii our next unit.



Main Points

+ Kinematic Quantities as Vector Quantities
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