
2.  Relative and Circular Motion 
 
A) Overview 
  We will begin with a discussion of relative motion in one dimension.  We will 
describe this motion in terms of displacement and velocity vectors which will allow us to 
generalize our results to two and three dimensions. 
   
 We will then discuss reference frames that are accelerating and will find that the 
description of phenomena in these frames can be somewhat confusing.  For the remainder 
of the course, we will restrict ourselves to the description of phenomena in inertial 
reference frames, those frames that are not accelerating.   
 
 Finally, we will consider a specific motion, namely uniform circular motion and 
find that it can be described in terms of a centripetal acceleration that depends on the 
angular velocity and the radius of the motion. 
 
B) Relative Motion in One Dimension 
 In the last unit we discovered that two-dimensional projectile motion can be 
described as the superposition of two one-dimensional motions: namely, motion at 
constant acceleration in the vertical direction and motion at constant velocity in the 
horizontal direction.  We then discussed the description of such a motion from two 
different reference frames.  In particular, we saw that the motion of a ball thrown straight 
up on a train moving at constant velocity would be described as one-dimensional free fall 
by an observer on the train, but would be described as a two-dimensional projectile 
motion by an observer on the ground.  In this unit, we will develop a general equation 
that relates the description of a single motion in different reference frames.    
 
 We will start with a one-dimensional case.  Suppose you are standing at a train 
station as a train passes by traveling east at a constant 30 m/s. Your friend Mike is on the 
train and is walking toward the back of the train at 1 m/s in the reference frame of the 
train. What is Mike’s velocity in the reference frame of the station? 
 
 Intuitively, you probably realize the answer is 29 m/s, but it will prove useful to 
develop, in this one-dimensional example, a general procedure that can be easily 
generalized to the more non-intuitive cases that involve two or three dimensions.  
 
 We start by drawing the displacement vectors of Mike in the two reference frames 
we have here: the train and the ground as shown in Figure 3.1.    At any time the 
displacement of Mike with respect to the ground is just equal to the displacement of Mike 
with respect to the train plus the displacement of the train’s origin with respect to the 
ground’s origin.   

GroundTrainTrainMikeGroundMike rrr ,,,
��� +=  

If we now differentiate this equation with respect to time, we obtain the equation we 
want: an equation that relates the velocities in the two frames.  In particular, we see that 



the velocity of Mike with respect to the ground is equal to the velocity of Mike with 
respect to the train plus the velocity of the train with respect to the ground.  

GroundTrainTrainMikeGroundMike vvv ,,,
��� +=  

Consequently, if we take east to be positive, then we see that Mike’s velocity with respect 
to the ground is +29 m/s.  Had Mike been walking towards the front of the train, his 
velocity would have been + 31 m/s.  
 
 We hope this result seems reasonable and intuitive to you.  Perhaps you’re even 
wondering why we went to the trouble introducing a formalism to obtain a very intuitive 
result.  I think the answer will be come clear in the next section when we discuss relative 
motion in two and three dimensions. 
  
C) Relative Motion in Two Dimensions 
 We now want to consider relative 
motion in more than one dimension.  How do 
we go about solving this problem?  Well, the 
formalism that we introduced in the last 
section is all we need to solve this problem.  
The key is that displacements, our starting 
point in the preceding section, are vectors!  
Therefore, when we differentiate the 
displacement equation, we obtained an 
equation that relates the velocities as vectors 
which holds in two and three dimensions as 
well!  
.  
Figure 3.2 shows Mike, in his motorboat, 
crossing a river.  The river flows eastward at a 
speed of 2 m/s relative to the shore.  Mike is 
heading north (relative to the water) and 
moves with a speed of 5 m/s (relative to the 

Figure 2.1b
A point P is specified by its displacement vector r
whose Cartesian coordinates are (x, y, z)

Figure 3.1
The displacement vectors of Mike in both the Train and Ground reference frames as well as the 
displacement vector of the origin of the Tranin freference frame in the Ground reference frame. 

Figure 3.2
Mike heads due North moving at 5 m/s with 
respect to the river that itself flows due East 
at 2 m/s with respect to the shore.



water).   If you are standing on the shore, how do you describe his motion?  How fast is 
he moving and in what direction? 

 
 To answer this question, we just apply our equation that relates the velocity 
vectors.  Namely, Mike’s velocity with respect to the shore is just the vector sum of his 
velocity with respect to the water (5m/s due north) plus the velocity of the river with 
respect to the shore (2 m/s due east).   

ShoreRiverRiverMikeShoreMike vvv ,,,
��� +=  

Since these velocities are orthogonal, we can evaluate the vector sum using the 
Pythagorean theorem as shown in Figure 3.3..  Namely, the magnitude of Mike’s velocity 
with respect to the shore is just length of 
the hypotenuse of the triangle.  We can 
also obtain his direction from this right 
triangle by noting that tanθ = 2/5, where θ 
is the angle (east of north) that Mike moves 
as seen by an observer on the shore.  
 
 This example illustrates all you 
have to know about relative motion.  
Writing down the displacement equation 
and differentiating it yields the relative 
velocity equation which can be applied in 
any relative motion problem.   
 
 As a note to the curious, though, 
this derivation does eventually break down 
once we consider speeds close to the speed 
of light.  Namely, one of the postulates of 
special relativity states that the speed of 
light is the same in all reference frames.  In 
order for the speed of light to be the same 
in all reference frames, time cannot be the 
same in all reference frames.  Time is no 
longer a river; observers in reference 
frames that are in relative motion must report different measurements for the time 
intervals between the same two events.  Consequently, our derivation of the simple 
relation between relative velocities will not work in special relativity.  The expression 
that describes how velocities add in special relativity is given by: 
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where c is the speed of light.   Clearly, in the limit that the speeds vA,B and vB,C are small 
compared to that of light, this expression reduces to the form that we have just derived in 
the framework of Newtonian mechanics.  Therefore, for our purposes in this course, we 
will simply use the Newtonian result for the addition of relative velocities. 

)( ,,, CBBACA vvv
��� +=  

Figure 3.3
The deterination of Mike’s velocity with 
respect to the shore using vector addition.



 
D) Accelerating Reference Frames 
 In the last two sections we have related observations made in one reference frame 
with those in another. In both cases, one frame was moving relative to the other with a 
constant velocity. What would happen if this relative velocity was not constant?  In other 
words, what happens in a reference frame which is accelerating?  
 
  We’ll start with an 
everyday example. Suppose you 
have some fuzzy dice hanging 
from a string tied to the rear-view 
mirror of your car. When you step 
on the gas and accelerate forward 
you see the dice swing backward 
as shown in Figure 3.4, just as if 
something were pushing them 
toward the back of the car. 
Indeed, you will feel yourself 
being pushed back into your seat 
in exactly the same way. Of 
course, no one is actually pushing 
the dice backward, nor is there 
anything actually pushing you 
back into the seat either – it just 
seems that way because you are accelerating.  
 
 Trying to understand physics in a reference frame that is accelerating can be 
confusing since the acceleration itself can easily be mistaken as a push or a pull. For this 
reason we usually only consider non-accelerating reference frames in this class, called 
“inertial” reference frames.  We will develop this framework in the next unit.    For now, 
though, we will take one more look at this example in order to discuss centripetal 
acceleration. 
 
E) Rotating Reference Frames  
 Suppose you are in the same car discussed on the last section. Imagine that, 
instead of accelerating straight ahead, you are now driving with a constant speed but you 
are going around a circular track turning to the left. What happens now to the dice 
suspended from your rear-view mirror?  Well, they will now swing over to the right! 
Since there is nothing actually pushing the dice, we conclude that the car, even though it 
is moving at a constant speed, must be accelerating.  
 
 We can visualize what is happening here if we consider a bird’s eye view and 
draw in the velocity vector of the moving car as it moves as shown in Figure 3.5. The 
direction of this vector is clearly changing as a function of time, even though its 
magnitude, its speed, remains constant as a function of time.  Since the acceleration 
vector is defined to be the time derivative of the velocity vector, we see that the 

Figure 3.4
As the car accelerates, the fuzzy dice swing backward.



acceleration of the car is non-zero!  The velocity vector changes in time because its 
direction changes in time.  

 
 What is the direction and magnitude of the car’s acceleration?  By subtracting 
successive velocity vectors in the figure, we can that the direction of this change in 
velocity is a vector that points toward the center of the circle. Since the direction of the 
acceleration is, by definition, the direction in which the velocity is changing, we see that 
the car’s acceleration is towards the center of the circle.  This result is consistent with the 
behavior of the dice hanging from the rear-view mirror.  Namely, just as before they are 
tilted in the opposite direction of the acceleration.  
  
 What about the magnitude of this acceleration?  To determine the magnitude, we 
have to do some geometry.  We’ll start by considering two velocity vectors separated in 

Figure 3.5
A car moves with constant speed around a circular track.  Since the 
direction of the velocity vector is constantly changing, the acceleration of 
car is not zero.  In fact its magnitude is constant and its direction is always 
towards the center of the circle.



time by a small amount equal to dt as shown in Figure 3.6.  
We define the angle between these velocity vectors during 
this time dt to be equal to dθ.  We can use the small angle 
approximation for dθ to obtain the magnitude of dv, the 
change in velocity vector during the time dt. 
   θvddv =  
Now the magnitude of the acceleration is just equal to the 
magnitude of the time rate of change of the velocity, 
namely, dv/dt.  Therefore, we see that the magnitude of the 
acceleration is given by: 
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We will discuss this acceleration and the meaning of dθ/dt 
in more detail in the next section. 
  
F) Centripetal Acceleration 
 We just determined that an object following a 
circular path with a constant speed has an acceleration that 
points toward the center of the circle with a magnitude 
equal to the speed of the object times the time rate of 
change of its direction, dθ/dt.  Since the acceleration vector 
always points toward the center, we say this motion has 
centripetal acceleration. 
 
 It certainly makes sense that the acceleration the car experiences as it turns gets 
bigger as the speed increases, but what about the dθ/dt term?  dθ/dt, by definition, is 
equal to the time rate of change of θ, the angle that locates the car with respect to the 
center.  Therefore, dθ/dt is a measure of how fast the direction of the car is changing in 
time, how fast it is turning.  Put this way, it does make sense that the acceleration 
depends on dθ/dt.  Imagine driving at the same speed but turning the steering wheel 
harder and making your turn tighter; you are turning quicker so you expect the 
acceleration to feel bigger.  
 
 The time rate of change of θ, dθ/dt, is called the angular velocity and is usually 
denoted by the symbol ω.  This angular velocity can be determined from the speed v and 
the radius R that defines a particular uniform circular motion.  Namely, the speed is just 
equal to the distance the car goes in one revolution (the circumference of the circle) 
divided by the time it takes to make one revolution (the period).  

T

R
v

π2=  

Now the angular velocity is equal to the total angular distance the car travels (2π radians) 
divided by the time it takes to make one revolution (the period).   

T

πω 2=  

Figure 3.6
We use the small angle 
approximation to determine 
the magnitude of the 
centripetal acceleration.



Comparing these two equations, we see that the angular velocity is just equal to the 
velocity divided by the radius of the motion. 

R

v=ω  

We can now write our expression for the centripetal acceleration in a more familiar way:  

R

v
va

2
== ω  

 
G) Examples  
 We’ll close this unit by doing a couple of examples to get a feeling for the 
magnitudes of accelerations that can be encountered. 
 
 We’ll start by driving around a circular track whose radius is 100 m.  How fast do 
we have go in order for the magnitude of our centripetal acceleration to be one g, the 
acceleration due to gravity?  
 
 Setting our expression for the centripetal acceleration equal to one g (9.81 m/s2), 
we find that the required velocity is equal to about 31 m/s or about 70 mph.    

smgRaRv /31===  

You might be interested to know that racecar drivers regularly experience even higher 
accelerations.  For example, at the Indianapolis 500, typical accelerations in the turns are 
about 4 g’s. 
 
 For our second example, we will consider the rotation of a person at rest on the 
surface of the earth.  Now this person, while at rest with respect to the surface of the earth 
is actually moving quite fast with respect to the axis of the earth.   Indeed, this speed is 
easy to calculate: at the equator this speed is just equal to the circumference of the earth 
divided by the time in one day, which works out to be around 1000 miles per hour!  

( )
sm

s

m

T

R
v Earth

equator /465
1064.8

104.622
4

6
=

×
×== ππ

 

This velocity is certainly significant, but the quantity of interest here is the centripetal 
acceleration.  When we divide the square of this speed by the radius of the earth, we find 
that the acceleration is, in fact, quite small: about one third of one percent of g. This value 
is small enough that we don’t really notice it and we are quite justified in ignoring its 
effect for any measurements we will make.  We can and will assume that the surface of 
the earth is a perfectly fine inertial reference frame. 
 
 By the way, we are also rotating about the Sun once per year.  We leave it as an 
exercise to the student to calculate the centripetal acceleration of this motion.  You 
should find that it is even smaller than that of the rotation of the earth about its axis.  
 
 



  
 
 
 

 


