2. Relativeand Circular Motion

A) Overview

We will begin with a discussion of relative matim one dimension. We will
describe this motion in terms of displacement agldaity vectors which will allow us to
generalize our results to two and three dimensions.

We will then discuss reference frames that arelacating and will find that the
description of phenomena in these frames can bewbat confusing. For the remainder
of the course, we will restrict ourselves to theatgtion of phenomena in inertial
reference frames, those frames that are not aatielgr

Finally, we will consider a specific motion, nameiniform circular motion and
find that it can be described in terms of a certapacceleration that depends on the
angular velocity and the radius of the motion.

B) Relative Motion in One Dimension

In the last unit we discovered that two-dimensiqmajectile motion can be
described as the superposition of two one-dimemasimotions: namely, motion at
constant acceleration in the vertical direction amation at constant velocity in the
horizontal direction. We then discussed the dpson of such a motion from two
different reference frames. In particular, we $hat the motion of a ball thrown straight
up on a train moving at constant velocity woulddescribed as one-dimensional free fall
by an observer on the train, but would be descrédsed two-dimensional projectile
motion by an observer on the ground. In this wné will develop a general equation
that relates the description of a single motiodifferent reference frames.

We will start with a one-dimensional case. Suppgsu are standing at a train
station as a train passes by traveling east anstaat 30 m/s. Your friend Mike is on the
train and is walking toward the back of the traii an/s in the reference frame of the
train. What is Mike’s velocity in the referencerfra of the station?

Intuitively, you probably realize the answer isr@8s, but it will prove useful to
develop, in this one-dimensional example, a gem@aedure that can be easily
generalized to the more non-intuitive cases thailire two or three dimensions.

We start by drawing the displacement vectors déeMin the two reference frames
we have here: the train and the ground as showigure 3.1. At any time the
displacement of Mike with respect to the grounpist equal to the displacement of Mike
with respect to the train plus the displacemerheftrain’s origin with respect to the
ground’s origin.

raMike,Ground = raMike,Train + rTrain,Ground
If we now differentiate this equation with respextime, we obtain the equation we
want: an equation that relates the velocities ettio frames. In particular, we see that
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the velocity of Mike with respect to the grouncepual to the velocity of Mike with
respect to the train plus the velocity of the tnaith respect to the ground.

vMike,Ground = vMike,Train +Vraj n,Ground
Consequently, if we take east to be positive, thersee that Mike’s velocity with respect
to the ground is +29 m/s. Had Mike been walkingauads the front of the train, his
velocity would have been + 31 m/s.

We hope this result seems reasonable and intudiyeu. Perhaps you're even
wondering why we went to the trouble introducinf@amalism to obtain a very intuitive
result. | think the answer will be come clearhe hext section when we discuss relative
motion in two and three dimensions.

C) Relative Motion in Two Dimensions
We now want to consider relative
motion in more than one dimension. How dc
we go about solving this problem? Well, the
formalism that we introduced in the last
section is all we need to solve this problem.
The key is that displacements, our starting
point in the preceding section, astors!
Therefore, when we differentiate the
displacement equation, we obtained an
equation that relates the velocities as vector
which holds in two and three dimensions as
well!

Figure 3.2 shows Mike, in his motorboat,
crossing a river. The river flows eastward at
speed of 2 m/s relative to the shore. Mike is
heading north (relative to the water) and
moves with a speed of 5 m/s (relative to the Figure 3.2

Mike heads due North moving at 5 m/s with
respect to the river that itself flows due East
at 2 m/s with respect to the shore.



water). If you are standing on the shore, howalodescribe his motion? How fast is
he moving and in what direction?

To answer this question, we just apply our equatat relates the velocity
vectors. Namely, Mike’s velocity with respect beetshore is just the vector sum of his
velocity with respect to the water (5m/s due nopla)s the velocity of the river with
respect to the shore (2 m/s due east).

VMike, Shore = VMike, River * VRiver, shore
Since these velocities are orthogonal, we can atalilhe vector sum using the
Pythagorean theorem as shown in Figure 3.3.. Naried magnitude of Mike’s velocity
with respect to the shore is just length of
the hypotenuse of the triangle. We can

also obtain his direction from this right ‘ F,-“w shore| = 2%
triangle by noting that tath= 2/5, wheref ‘_., '
is the angle (east of north) that Mike mowv:

as seen by an observer on the shore.

This example illustrates all you | = | — &
have to know about relative motion. Mike,river| — < 5
Writing down the displacement equation

and differentiating it yields the relative

velocity equation which can be applied in

any relative motion problem.

=29

‘ Vy fike, shore

As a note to the curious, though,
this derivation does eventually break dow tan 0 =
once we consider speeds close to the spe
of light. Namely, one of the postulates of
special relativity states that the speed of
light is the same in all reference frames. _
order for the speed of light to be the same Flgure 3.3 _ -
in all reference frames, ting@annot be the The deterination of Mike’s velocity with
same in a” reference frames_ T|me is no respeCt to the ShOI'e USing vector add|t|0n
longer a river; observers in reference
frames that are in relative motion must reportettdht measurements for the time
intervals between the same two events. Consequent derivation of the simple
relation between relative velocities will not warkspecial relativity. The expression
that describes how velocities add in special natgtis given by:

~_ (VaAB*VBC)
VA,C =
1+ (VA' BVB,C/C2 )
wherec is the speed of light. Clearly, in the limit thiae speedsg,g andvgc are small
compared to that of light, this expression reduodbe form that we have just derived in

the framework of Newtonian mechanics. Therefaveplr purposes in this course, we
will simply use the Newtonian result for the adalitiof relative velocities.

Vac =(VaB *+VBC)
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D) Accelerating Reference Frames

In the last two sections we have related obsermatmade in one reference frame
with those in another. In both cases, one framem@ang relative to the other with a
constant velocity. What would happen if this relatvelocity was not constant? In other
words, what happens in a reference frame whichaslarating?

We'll start with an
everyday example. Suppose you
have some fuzzy dice hanging
from a string tied to the rear-view
mirror of your car. When you stef
on the gas and accelerate forwar
you see the dice swing backward
as shown in Figure 3.4, just as if
something were pushing them
toward the back of the car.
Indeed, you will feel yourself
being pushed back into your seat
in exactly the same way. Of
course, no one is actually pushin
the dice backward, nor is there Figure 3.4
anything actually pushing you  As the car accelerates, the fuzzy dice swing bamkwa
back into the seat either — it just
seems that way because you are accelerating.

Trying to understand physics in a reference frémagis accelerating can be
confusing since the acceleration itself can edmlynistaken as a push or a pull. For this
reason we usually only consider non-acceleratifgyeéace frames in this class, called
“inertial” reference frames. We will develop tliramework in the next unit.  For now,
though, we will take one more look at this examplerder to discuss centripetal
acceleration.

E) Rotating Reference Frames

Suppose you are in the same car discussed oaghgdction. Imagine that,
instead of accelerating straight ahead, you arearoxing with a constant speed but you
are going around a circular track turning to tHe M/hat happens now to the dice
suspended from your rear-view mirror? Well, thely mow swing over to the right!
Since there is nothing actually pushing the dice canclude that the car, even though it
is moving at a constant speed, must be accelerating

We can visualize what is happening here if we iarsa bird’'s eye view and
draw in the velocity vector of the moving car asitives as shown in Figure 3.5. The
direction of this vector is clearly changing asiadtion of time, even though its
magnitude, its speed, remains constant as a functibme. Since the acceleration
vector is defined to be the time derivative of Wiedocity vector, we see that the



acceleration of the car is non-zero! The veloe#gtor changes in time because its
direction changes in time.

Acceleration

dv

a=—

Figure 3.5

A car moves with constant speed around a circtda@kt Since the
direction of the velocity vector is constantly chamg, the acceleration of
car is not zero. In fact its magnitude is constartt its direction is always
towards the center of the circle.

What is the direction and magnitude of the cacseteration? By subtracting
successive velocity vectors in the figure, we d¢aat the direction of this change in
velocity is a vector that points toward the ceutiethe circle. Since the direction of the
acceleration is, by definition, the direction inialinthe velocity is changing, we see that
the car’s acceleration is towards the center ottrete. This result is consistent with the
behavior of the dice hanging from the rear-viewrorir Namely, just as before they are
tilted in the opposite direction of the accelematio

What about the magnitude of this acceleration?d8termine the magnitude, we
have to do some geometry. We'll start by consiagetwo velocity vectors separated in



time by a small amount equaldbas shown in Figure 3.6. dv =vdb

We define the angle between these velocity vedorsg
this timedt to be equal td6. We can use the small angle ﬁ
approximation fodé@to obtain the magnitude df/, the 10
change in velocity vector during the tirdie F(f + .ff,r] »

dv =vdé ' V()

Now the magnitude of the acceleration is just etuéhe
magnitude of the time rate of change of the vejpcit
namely,dv/dt. Therefore, we see that the magnitude of th:
acceleration is given by:

__|av dé
A==y
dt dt
We will discuss this acceleration and the meaningdt _
in more detail in the next section. Acceleration
F) Centripetal Acceleration a=v do
We just determined that an object following a dt
circular path with a constant speed has an actelerénat
points toward the center of the circle with a magphe Figure 3.6
equal to the speed of the object times the tineaht We use the small angle
change of its directiordddt. Since the acceleration vectorapproximation to determine
always points toward the center, we say this matias the magnitude of the
centripetal acceleration. centripetal acceleration.

It certainly makes sense that the acceleratiomdh@xperiences as it turns gets
bigger as the speed increases, but what aboudtdbeterm? ddt, by definition, is
equal to the time rate of change&the angle that locates the car with respectdo th
center. Thereforelddt is a measure of how fast the direction of theixghanging in
time, how fast it is turning. Put this way, it domake sense that the acceleration
depends odddt. Imagine driving at the same speed but turniegstieering wheel
harder and making your turn tighter; you are tugrgaicker so you expect the
acceleration to feel bigger.

The time rate of change 6fdddt, is called theangular velocity and is usually
denoted by the symbab This angular velocity can be determined fromgpeeds and
the radiuR that defines a particular uniform circular motiddamely, the speed is just
equal to the distance the car goes in one revaliftiee circumference of the circle)
divided by the time it takes to make one revolufithe period).

27R
V=——
T
Now the angular velocity is equal to the total dagdistance the car travelsri(Badians)
divided by the time it takes to make one revolufjiihre period).
_2n
T



Comparing these two equations, we see that thelangelocity is just equal to the
velocity divided by the radius of the motion.
%
w=—
R
We can now write our expression for the centripataleleration in a more familiar way:
v2
as-vw=—
R

G) Examples
We’'ll close this unit by doing a couple of exangte get a feeling for the
magnitudes of accelerations that can be encountered

We’'ll start by driving around a circular track wderadius is 100 m. How fast do
we have go in order for the magnitude of our ceetal acceleration to be ogethe
acceleration due to gravity?

Setting our expression for the centripetal acegien equal to ong (9.81 m/$),
we find that the required velocity is equal to ab®lim/s or about 70 mph.

v=\/ﬁ:,/gR=31 m/s

You might be interested to know that racecar davegularly experience even higher
accelerations. For example, at the Indianapol® §fpical accelerations in the turns are
about 4g's.

For our second example, we will consider the rotedf a person at rest on the
surface of the earth. Now this person, while at vath respect to the surface of the earth
is actually moving quite fast with respect to tiesaf the earth. Indeed, this speed is
easy to calculate: at the equator this speed i®msl to the circumference of the earth
divided by the time in one day, which works oub®waround 1000 miles per hour!

2 . 6
Vequator = nRTEa”h = 2”(64x10 m) =465 m/s

864x10%s
This velocity is certainly significant, but the quidy of interest here is the centripetal
acceleration. When we divide the square of theedgy the radius of the earth, we find
that the acceleration is, in fact, quite small:ethane third of one percent gf This value
is small enough that we don’t really notice it amelare quite justified in ignoring its
effect for any measurements we will make. We cahwill assume that the surface of
the earth is a perfectly fine inertial referenaie.

By the way, we are also rotating about the Sureq®er year. We leave it as an
exercise to the student to calculate the centtdipeteleration of this motion. You
should find that it is even smaller than that @& thtation of the earth about its axis.



Main Points
* Relative motion

The veloctly of an object in frame A can be found from iy velocily in
Jrame B by adding (as veclors) the relatie velocily of the bvo frames

=29a
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¢ Uniform Circular Motion

An object moving with constant speed fn a circular path has an
acceleration whose divection is aiways fowards the center of the circle
{centripetal acceleration) amd whose magnifide is proporiional fo the
seuare of the speed and inversely proporfiond fo the radius gf the circle.




