5. Forcesand Free-Body Diagrams

A) Overview

We will begin by introducing the bulk of the négrces we will use in this
course. We will start with the weight of an objabe gravitational force near the surface
of the Earth, and then move on to discuss the ndoree, the force perpendicular to the
surface that two objects in contact exert on edlshrpand the tension force, the force
exerted by a taut string. Finally, we will intrauNewton’s universal law of gravitation
that describes the forces between any two objeatdiave mass. We will close by
introducing free body diagrams which we will theseun the solution of a Newton’s
second law problem.

B) Weight

In order to apply Newton’s Second law in phys&i#@hations, we will need to
increase our inventory of forces. We will starttwihe gravitational force near the
surface of the Earth. We have already seen thabpaat in free fall near the surface of
the Earth has a constant acceleration whose direigidown and whose magnitude is
equal to the constagt which is equal to about 9.8 rfiysFrom this description of the
motion, we can use Newton'’s second law to concthdethere must be a force in the
downward direction acting on the object and thetrtragnitude of this force must be
equal to the product of the mass of the objectthadonstang.

W =mg
We call this force the weight of the object. lingportant to realize the weight of an
object isNOT the same thing as its mass! Mass is an intripiperty of the object; its
value determines how hard it is to change its yBlocMass doedlOT depend on the
location of that object or on its surroundings. @¥j on the other hand, just tells us the
magnitude of the gravitational force that is actomgthe object. We will investigate the
nature of this gravitational force more fully aftee first introduce a few more
straightforward forces.

C) Support forces. The Normal Force and Tension

We can use our knowledge of the weight force ftbenlast section to motivate
the need for two more forces. First, consideriticeadibly mundane situation of a heavy
box sitting on a floor as shown in Figure 4.1. \Maces are acting on this box? Well,
certainly the weight of the box is acting, supptyaforce vertically downward. This
can't be the only force on the box, though, sificewere, Newton’s Second law would
tell us that the box should be accelerating dowdwath constant acceleration equal to
g. Therefore, to obtain the needed zero acceteratinere must be another force that
acts vertically upward with the same magnitude teNbat this force i8lOT the
Newton’s third law pair to the weight since bothdes act on the same object, the box.
This force is the force exerted by the floor onltle& and is usually called tmermal
force, since its direction is perpendicular to the stefa



What determines the magnitude of this force, inegal? Well, to determine the
magnitude of the normal force in any particularecage do just as we did here; we apply
Newton'’s law. The normal force is simply what is has to be to do what it does! What it
does is to supply a supporting force for objects!

The total force exerted by any surface in contattt another surface will always
have a normal component, but it may also have gooent parallel to the surfaces
called the frictional force. We will discuss thature of frictional forces in the next unit.
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Figure 5.1

Two forces act on a box that is at rest on therfloo
the weight W, the gravitational force exerted by th
Earth, and N, the normal force exerted by the floor

A force similar to the normal force between suefat contact with each other is
thetension force in strings, wires
and ropes. Figure 5.2 shows a ball
hanging from a string. What forces Tension Force
are acting on the ball? Clearly the
weight force acts vertically T=F. .
downward. In order to obtain the String , Balt
needed zero acceleration, the string
must also be exerting a force on the
ball. We call this force theension
force; it exists whenever the string
is taut and its direction is along the
string, in this case, vertically
upward. From Newton’s second
law, we can determine that the
magnitude of this force must be
equal to the weight of the ball in Figure 5.2

order to provide the observed zero Twpo forces act on a ball that is suspended byiragstr
acceleration. Just as was the case the weightw, the gravitational force exerted by the
Earth, andr, the tension force exerted by the string.

W =mg



for the normal forcethe tension force is ssmply what is has to be to do what it does! In
this case, the sting is just holding up the batings can also be used to pull objects
across a surface. In either case, the magnitutteedension must be determined from
Newton’s second law.

D) Springs
Figure 5.3 shows a ball hanging from a spring. dafe use Newton’s second law
to determine that the spring mus

. 'y
be exerting a force on the ball
that is equal to its weight. F e O
However, if we were to replace i

situation, we know the spring
would be exerting twice the
force, but its length would be
increased. In fact, the amount
by which the length changes tell
us the magnitude of the force! N R A i
The key concept here is that spring
every spring has an equilibrium
length, and if it is stretched or
compressed by some amoulxt
from this length, it will exert a
restoring force that opposes this .
change. The magnitude of this W =Mg
force is proportional talx, the
extension or compression of the
spring from its equilibrium
position.
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Figure 5.3

Two forces act on a ball that is suspended by iagpr

the weightW, the gravitational force exerted by the

The force law for springs that Earth,_ and- gying, the f_orce exer_ted by th_e spring. The

quantifies this relation is given magnlt_ude of the spring force is proport_lpngl te t_h _

by: extension (or compression) fromits equilibrium piosit
Fspring = —k(X=X%o)

where the vectax, represents the equilibrium length of the springilevthe vectox

represents the final length of the spring. Themedifferencex — x, represents the

amount by which the spring is either stretchedasngressed. The minus sign in the

equation illustrates that the force is always m ¢pposite direction of the vector X,

the extension or compression of the spring. Ifdfeng is stretched, — X, points away

from the equilibrium position; therefore the folisedirected back towards the

equilibrium position. If the spring is compressed- X, once again points away from

the equilibrium position; therefore, the force gam directed back towards the

equilibrium position. Since the force exerted by #pring is always directed towards its



equilibrium position, we call this force a restayiforce. The directions of these vectors
are illustrated in Figure 5.4.

—

spring

It

spring

=0 equilibrium

Figure 5.4

The spring force is a restoring force. The foreetor £ = —k(x —X,))
always points back towards the equilibrium positgnllustrated in
extension (top) or compression (bottom).

If we define the origin of our coordinate systenb#at the equilibrium position, then our
force equation simplifies t = -kx.

The symbok stands for thepring constant of the particular spring and is a
measure of its stiffness. The unitskadire Newtons per meter; a large valu& ofeans
that a small deformation results in a big force.

E) Universal Gravitation

We now want to generalize our discussion of tmedfave called the weight
earlier. You know that the moon orbits the Eartthwa period of about a month and the
Earth orbits the Sun with a period of a year. Tgmad approximation these orbits are
examples of uniform circular motion and therefore kimow that each orbiting body
experiences a centripetal acceleration. Therefofdewton’s framework, there must be
a real force being exerted on the orbiting body ihaesponsible for this acceleration.
Newton proposed that this force was a universaligri@onal force that exists between
any two objects that have mass. .

In particular, he said that any two objects withss exert attractive forces on
each other whose magnitude is proportional to thdyrct of the masses divided by the



square of the distance between them and whosdiditdies along a line connecting
them.
Foravity = Gml—rznz 12
2

In this expressiorG represents the universal gravitational constadtigsrepresents the
unit vector in the direction fromm, to mp. Figure 5.5 illustrates the application of this
expression to the Earth-moon
system. The symboMg and
M refer to the masses of the
Earth and moon respectively,
while Ren, is the Earth-moon
distance. We know the
acceleration of the mooay,, is
equal to the square of its speed
divided by the Earth-moon
distance. Applying Newton’s
second law, we can determine
the acceleration of the moon.
o = Vh, _Fem _ o ME
m 2

Rem Mn REm
All quantities in this expression
were known to Newton except
the universal gravitational
constant and the mass of the
Earth.

Newton, however,
realized that the known Figure 5.5
acceleration due to gravity near The universal gravitation force exerted by the Eart the
the surface of the Earth, was alsomoon provides the necessary centripetal accebersi

proportional to the product of  keep the moon in its orbit about the Earth.
these unknown quantities! In

order to make this realization, though, he essihad to invent the calculus to show
that the force the Earth exerts on any object isvadent to that obtained by simply
placing all of the mass of the Earth at its center.

M EMgpple
RE
Given this result, we see that the accelerationtdygavity near the surface of the Earth

is equal to the product of universal gravitatioc@hstant and the mass of the Earth
divided by the square of the radius of the Earth.

Wapple = Mappled =G



Therefore, we see that the ratio of the moon’slacagon to that of an apple in free fall
near the surface of the Earth is predicted to bl the ratio of squares of the radius
of the Earth to the Earth-moon distance.

am _ RI%
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Now, the speed of the moon in its orbit is 1.02&kmwhile the Earth-moon distance is
3.844X10° km and the radius of the Earth is 6371 km. Wherplug in these numbers
for the known quantities, we find that this premtiotis verified! This result is really
amazing! It represents the first demonstration tiea same physical laws that operate
here on Earth also operate in the Heavens!

F) Free-Body Diagrams

In the last unit, we introduced Newton’s threedamhich supply the framework
we will use to develop our understanding of dynamiln particular, these laws will
provide the basis for our understanding of the arotif any object in terms of the forces
that act on it. In order to use these laws sutakgsthough, we need to keep careful
track of the magnitudes and the directions ofaités acting on the object in question;
we will use free-body diagrams to accomplish thekt

U

Box Man

Fy,

an, Floor

F Flaor Man

Figure 5.6
All forces that act when a man pushes a box a@assooth floor.

Figure 5.6 shows a man pushing a box across a brfloot with a representation of all
forces that are acting. Contact forces are showed and the gravitational forces are
shown in blue. Note that all of forces come in paats required by Newton’sd3aw. For
example, the force exerted by the box on the menqusl and opposite to the force
exerted by the man on the box.



We would like to calculate the acceleration of lieet. How do we go about
making this calculation? The key step here is#dize that thenly forces which are
relevant to this problem are the ones thaCGi¢tthe box — all other forces can be
ignored. A diagram showing only these forces Ikedaa free-body Diagram for the box
and is illustrated in Figure 5.7.

Free-Body Diagram
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Figure 5.7
The free-body diagram for the box shown in Fig 5.6.

Applying Newton’s second law to the box, we ses the acceleration of the box
will be equal to the total force on the box dividadthe mass of the box. To determine
the total force on the box, we will need to addyestors, all of the forces shown in this
free body diagram for the box. Usually, in ordeatld these vectors, we will want to
decompose the forces into appropriate componeuitsveite Newton’s second law
equations for each component separately.

_ I:Man,Box
Bhorizontal = Mo A
0X

avertical = FFloor,Box ~ FEarth,Box =0

G) Example: Accelerating Elevator

We’'ll close this unit by considering a one-dimemsil problem to illustrate the
procedure to use when solving dynamics problems.



Figure 5.8 shows a box of masdanging by a rope from the ceiling of an elevator
moving vertically with acceleratiom We want to calculate the tension in the rope for
any value of this acceleration.

mg

Figure 5.8
A box of massnhangs by a rope in an elevator that is moving valty
with acceleratiora. What is the tension in the rope? To solve this
problem, use the free-body diagram for the box ighahown.

The first step is to draw a picture and labettadl forces acting on the object in
guestion. In this case the object is the box, deddrces acting on it are the tension in
the rope T), which points upward, and the weight of the biag)( which points
downward, as shown

The second step is to choose a co-ordinate system.system will do, but you
will soon discover that choosing one in which ohéhe axes is parallel to the
acceleration will simplify the calculation.

The next step is to use your picture as a guiderite down the components of
Newton's second law and solve for whatever varigblewant to determine. In our case
all of the forces act along a single directiontsat tve only have one equation to solve.
The force on the box due to the ropd im the +y direction and the force on the box due
to gravity ismg in the —y direction; therefore the total forcetba box in the +y direction



is given by:
Fret,y =T —mg
Substituting this expression for the total forcéNiewton’s Second law yields the result
that the tension is equal to the weight of the plos the product of the mass of the box
and its acceleration.
T=m(a+g)

The final step is to check to see if your answakes sense. In this case we just
found that the tension in the rope is given bywiegght of the box plus an extra part
which is proportional to the acceleration. If wensmler the case where the elevator is not
accelerating we see that the tension in the ropesiequal to the weight of the box. If
the elevator is accelerating upward, the tensidngger than the weight, and if the
elevator is accelerating downward the tensionss tean the weight. All of these
observations make sense.



Main Points

* Support Forces

Suppori forces, for example the normal force and fhe tension_force, are what they have
fo be to dowhat they have fo d. Magnifudes are defermined by Newion’s second low

Tension Force
T — 'F.'irrm,q_.’ﬁwh'

Normal Force

N=F Floor ,Box W =mg
* Universal Gravitation
Universal Law of Gravitation
Any o objects with niass exert affractive Fo o gmm i
Jorees on each other whose magniiude is i r Fiy
proporfional fo the prodiuct of the masses =5

divided by the square of the distance
between them and whose divection Ifes

F: 21 =
along a line connecting them. M' -
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