
6.  Friction 
 
A) Overview 
  This unit is devoted to the introduction of a single force, friction.  Frictional 
forces are omnipresent in our world.  Indeed, pretty much all science prior to Galileo, 
focused on what was directly observed, much of that being dominated by friction.  
Galileo, in his description of free fall, and Newton in his first law, took as fundamental 
the more idealized description of motions in the absence of friction.  The effects of 
friction then can be “added back in”.  We will learn in this unit exactly how to account 
for these effects of friction within Newton’s framework.   
 
 In particular, we will adopt a simple model for frictional forces that is specified 
by two constants for each pair of surfaces that are in contact with each other.  These 
constants are the coefficients of static and kinetic friction.  We will then address specific 
examples to demonstrate how we can use these constants to account for frictional forces 
within Newton’s framework. 
 
B) Friction 
 In the last unit we introduced several new forces.  The gravitational force is a 
fundamental force of nature that exists between any two objects of any size that have 
mass.  In this unit, we will introduce a force, friction, that is more similar to the contact 
forces we discussed in the last unit. 
 
 In general the force between two surfaces that are in contact has components both 
perpendicular and parallel to the surfaces.  The perpendicular component is the normal 
force we discussed last time.  The parallel component is called the friction force.  
 
 The direction of the friction force is always such that it opposes any relative 
motion of the two surfaces.  We distinguish between two kinds of friction forces.  Kinetic 
friction refers to cases in which one surface moves relative to the other one, such as when 
a box slides across the floor, while static friction refers to cases in which the surfaces do 
not move relative to each other, such as when a person is pushing on a stationary heavy 
box.   
 
 The microscopic origins of these friction forces are complicated; they arise from 
the interactions of atoms on the surface of materials.   We will not try to understand these 
interactions in this course.  We will only be concerned with characterizing the friction 
forces on macroscopic objects using a simple model. 
 
C) Kinetic Friction 
 When one object slides across another the frictional force between them is found 
to depend linearly on the perpendicular force between them. In other words, the frictional 
force is proportional to the normal force. The constant of proportionality, µK, is called the 
coefficient of kinetic friction.   This constant depends only on the properties of the two  
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surfaces and not on the size or weight of the objects.    
 
 We’ll now do an example to see how this works. Suppose a box is given an initial 
shove after which it slides on a horizontal floor. If the coefficient of kinetic friction 
between the floor and the box is µΚ, what is the acceleration of the box as it slows to a 
stop? 
 
 We will follow the problem solving procedure we developed last time. We first 
draw the free body diagram for the box as shown in Figure 6.1.  The forces acting on the 

box once it is in motion are the weight of the box, the normal force exerted by the ground 
on the box, and the kinetic friction force.  The next step is to write down Newton’s 
second law for both the x and y directions.   
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The acceleration in the y direction is zero; therefore, the magnitude of the normal force is 
just equal to the weight of the box.  Turning now to the x direction, we see that we can 
determine the acceleration since we now know the magnitude of the kinetic friction force.  
Namely, the acceleration in the x direction is just equal to the coefficient of kinetic 
friction times the acceleration due to gravity.  The minus sign indicates that the direction 
of the acceleration is to the left. 
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Note that the acceleration does not depend upon the mass of the box!  How does this 
come about?  The reason is that the net force here is just the kinetic friction force which, 
by its definition, is proportional to the normal force.   But the normal force here is equal 
to the weight of the box; therefore, we see that the kinetic friction force is proportional to 

Figure 6.1
The free-body diagram for a box of mass m sliding across a 
floor characterized by a coefficient fo sliding friction µK
between th box and the floor.



the mass of the box.  Consequently, when we write down Newton’s second law, we see 
the mass cancels.  Therefore, we see that the box slows down with a constant acceleration 
whose magnitude depends only on the coefficient of kinetic friction. 
 
D) Static Friction 
 We’ll now turn to another everyday example that illustrates how we account for 
static friction. Figure 6.2 shows a box is at rest on a horizontal floor being pulled gently 
by a rope attached to it. The box does not move. Pull a bit harder, and the box still does 
not move. If we keep pulling harder and harder, eventually the box does move. How do 

we describe what happened in terms of Newton’s laws?   Clearly the acceleration of the 
box was zero until it began to move.  We know then from Newton’s second law, that 
until the box began to move, the total force on the box was zero!  Since the rope was 
exerting a force on the box, directed to the right, there must be have been another force of 
the same magnitude that was directed to the left.  This force is the static friction force f; it 
opposes the horizontal motion that the tension force would have produced.  
 
 The magnitude of the tension force 
reflects how hard we pull.  The harder we 
pull, the bigger the tension gets, and 
therefore, the bigger the frictional force 
becomes, This dependence of the frictional 
force on the tension is demonstrated in the 
plot shown in Figure 6.3. 
 
There is a limit to the force that friction can 
provide, though, and eventually we are able 
to move the box just by pulling harder. 
This maximum value of the force that static 
friction can provide is once again just 
proportional to the normal force. In this 
case the constant of proportionality is 

Figure 6.2
A rope exerts a force on a box and the floor exerts a friictional force on the box.  The box is stationary, 
implying that the magnitude of the static frictional force is equal to the magnitude of the tension force.

Figure 6.3
Aplot of the magnitude of the fritional
force as a function of the tension of the 
rope used in the example in Fig 6.2



called the coefficient of static friction, µS, and depends only on the properties of the two 
surfaces.  This behavior of the static friction force that we have described is captured in 
an inequality; namely, that the static friction force is less than or equal to the coefficient 
of static friction times the normal force.  Note the important difference between kinetic 
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and static friction: the kinetic force is always equal to µKN, while the static force is NOT 
always equal to µS N.  In fact, the static force is only equal to µS N just before the surfaces 
began to move.  In all other cases, the static force is less than this maximum force;  just 
as it was for the normal force and for the tension force, the magnitude of the static 
frictional force must be determined from Newton’s second law: The static frictional force 
is simply what is has to be to do what it does!    
 
 We can summarize what we have learned about friction so far by completing the 
plot we have created for static friction.  As we increase T beyond the point at which the 

box begins to move, we see that frictional force stays constant as T increases.  The  
discontinuity at the point at which the box begins to move indicates that µS > µK.   
 
E) Example: Box Sliding Down Ramp  
 We’ll now do some examples that illustrate the use of these frictional forces 
within the framework of Newton’s laws.   We will start with the calculation of the 
acceleration of a box as it slides down a rough ramp.   
 
 Figure 6.5 shows a free-body diagram of all of the forces acting on the box. In the 
absence of friction between the ramp and the box, there are two forces acting on the box: 
its weight (mg), which points downward, and the normal force N that the ramp exerts on 
the box.  The direction of this normal force is perpendicular to the ramp.  Right away we 
can see that there is a net force directed down the plane which gives rise to the 
acceleration down the plane.   If there is friction between the box and the ramp, there will 

Figure 6.4
A plot of the magnitude of the fritional
force as a function of the tension of the 
rope used in the example in Fig 6.2  The 
foprce is discontinuous at the point where 
the box begins to move.



be an additional force that opposes this motion.  Therefore, this frictional force is directed 
up the plane and has a magnitude equal to µKN, when the box is sliding. 

 
We now need to choose a coordinate system.  As we mentioned last time, choosing one 
axis to be parallel to the acceleration often simplifies the calculation.  Therefore, we will 
choose our x-axis to point down the ramp and the y-axis to be perpendicular to the ramp.  
 
 Finally we write down Newton’s second law for both the x and y directions.  To 
write down the y equation, we need to find the y-component of the weight.  Since the 
normal force is perpendicular to the ramp and the weight is perpendicular to the 
horizontal, we see that the angle between these two forces must also be equal to θ, the 
angle the ramp makes with the horizontal.  Therefore, we can use trigonometry to  
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determine that the y-component of the weight is just equal to the weight times the cosine 
of the angle the ramp makes with the horizontal.  Writing down Newton’s second law for 
the y direction, we obtain the magnitude of the normal force.  This result holds for both 
the friction and frictionless cases.   

θcosmgN =  
 We can now obtain a value for the magnitude of the frictional force from our 
result for the magnitude of the normal force.  The x-component of the weight is equal to 
the product of the weight and the sine of the angle the ramp makes with the horizontal.  
We can now write down Newton’s second law in the x-direction in terms of this frictional 
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force and the component of the weight down the ramp.  We can substitute our result for 
the normal force into this equation and then solve for the acceleration.  We obtain the 

Figure 6.5
A free-body diagram for a box of mass m sliding down a ramp. The 
friction between the ramp and the box is specified by the coefficient of 
kinetic frcition, µK.



result that the acceleration is equal to the g times a factor that is determined by the 
coefficient of kinetic friction and the angle the ramp makes with the horizontal. 
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We can remove the frictional force by setting µK equal to zero, to determine that the 
acceleration in the absence of friction is just equal to the product of g and the sine of the 
angle the ramp makes with the horizontal.   
 
F) Example:  Box at Rest on Ramp 
 We’ve just determined the acceleration of a box sliding down a ramp.  In 
particular, we see that the acceleration decreases as the angle θ decreases.  If we make the 
angle small enough, the frictional force on the box will prevent it from accelerating at all!  
At such an angle, what is the magnitude of the frictional force?   
 
 To answer this question, we start with the free-body diagram shown in Figure 6.6.   

We see that this diagram is essentially identical to that in Figure 6.5, as long as we just call 
the frictional force f.   Since the box is not moving, we have a case of static friction.  The 
magnitude of the static friction force must be determined from Newton’s second law   In 
particular, the magnitude of the static friction force must be equal to the component of the 
weight down the plane.   
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As we increase θ, both the friction force and the x-component of the weight increase.  At 
some angle θmax, though, the static friction force can increase no more and the block will 
begin to slide.  We can determine θmax by setting the static friction force equal to its  

Figure 6.6
A free-body diagram for a box of mass m on a ramp whose 

angle with the horizontal, θmax,is the largest it can be to 
prevent the box from sliding down the ramp..  



maximum value (µS N).  Substituting this value for the frictional force back into our  
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general equation, we obtain our result for the maximum angle the ramp can make with 
the horizontal to prevent the box from sliding down the ramp. 

maxmax sincos θθµ mgmgS =  
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G) Example: Car Rounding a Corner 
 We’ll close this unit by doing one more example involving friction, namely, that 
of a car of mass M rounding a circular turn of radius R. If the coefficient of static friction 
between the tires and the road is µS, how fast can the car go around the turn without 
skidding off the road? 
 
 Perhaps your first question here is why in the world are we giving you the static 
coefficient of friction when the car is clearly moving?  The answer to this question is that 
the tires are rolling: the surfaces of the tires are not sliding relative to the surface of the 
road, since if they were, the car would already be skidding!  During normal driving it is 
the static friction between the tires and the road that makes a car speed up, slow down, 
and turn corners! 
 
 We start, as always, by drawing a free body diagram for the car as shown in 
Figure 6.7.  From this diagram, we see it is just the frictional force f that is responsible 

for the centripetal acceleration of the car.  Next, we choose the x-axis to point toward the 
center of the circle to align it with the direction of the acceleration.  We choose the y-axis 
to be vertically up.   
 

Figure 6.7
The free-body diagram for a car of mass m moving at constant speed v in a circle of radius R..



 Writing Newton’s second law for the y-direction, we see that the magnitude of the 
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normal force is just equal to the weight of the car.  Writing Newton’s second law for the 
x-direction, we see that the frictional force must be equal to the mass of the car times the  
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centripetal acceleration.  We know the centripetal acceleration is equal to the square of 
the speed divided by the radius of the turn.  Therefore as the car’s speed increases, the 
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frictional force must also increase.  There is a limit though, as to how much this frictional 
force can increase.  This limit is determined by the coefficient of static friction, µS.  This 
maximum frictional force then produces the maximum centripetal acceleration which 
determines the maximum velocity. Therefore, we obtain the maximum speed that the car  
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can make the turn without skidding is proportional to the square root of the product of the 
turning radius and the coefficient of static friction. This result makes sense:  the car’s 
maximum speed should increase if either the friction increases or the turning radius 
increases. 
  
 
 



 
 
 
 

 


