6. Friction

A) Overview

This unit is devoted to the introduction of agéenforce, friction. Frictional
forces are omnipresent in our world. Indeed, pnettich all science prior to Galileo,
focused on what was directly observed, much oflieatg dominated by friction.
Galileo, in his description of free fall, and Newtim his first law, took as fundamental
the more idealized description of motions in ébeence of friction. The effects of
friction then can be “added back in”. We will lean this unit exactly how to account
for these effects of friction within Newton'’s framerk.

In particular, we will adopt a simple model foicfronal forces that is specified
by two constants for each pair of surfaces thatracentact with each other. These
constants are the coefficients of static and kineiction. We will then address specific
examples to demonstrate how we can use these nt8taaccount for frictional forces
within Newton’s framework.

B) Friction

In the last unit we introduced several new forcéke gravitational force is a
fundamental force of nature that exists betweentanyobjects of any size that have
mass. In this unit, we will introduce a foréection, that is more similar to the contact
forces we discussed in the last unit.

In general the force between two surfaces thainacentact has components both
perpendicular and parallel to the surfaces. Thpegyalicular component is timermal
force we discussed last time. The parallel componetalied theriction force.

The direction of the friction force @ways such that it opposes any relative
motion of the two surfaces. We distinguish betwsemkinds of friction forcesKinetic
friction refers to cases in which one surface moves relébithe other one, such as when
a box slides across the floor, whiatic friction refers to cases in which the surfaces do
not move relative to each other, such as whensopas pushing on a stationary heavy
box.

The microscopic origins of these friction forcee aomplicated; they arise from
the interactions of atoms on the surface of mdteridVe will not try to understand these
interactions in this course. We will only be comel with characterizing the friction
forces on macroscopic objects using a simple model.

C) Kinetic Friction

When one object slides across another the friatitorce between them is found
to depend linearly on the perpendicular force betwsaem. In other words, the frictional
force is proportional to the normal force. The ¢ansof proportionalityp, is called the
coefficient of kinetic friction. This constant depends only on the propertiegefwo
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surfaces and not on the size or weight of the ¢bjec

We’ll now do an example to see how this works. #ge a box is given an initial
shove after which it slides on a horizontal fldbthe coefficient of kinetic friction
between the floor and the boxug, what is the acceleration of the box as it slowva t
stop?

We will follow the problem solving procedure wevetped last time. We first
draw the free body diagram for the box as showrignire 6.1. The forces acting on the
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Figure 6.1

The free-body diagram for a box of massliding across a
floor characterized by a coefficient fo sliding tran 24
between th box and the floor.

box once it is in motion are the weight of the bibve normal force exerted by the ground
on the box, and the kinetic friction force. Theingtep is to write down Newton’s
second law for both theandy directions.
~ U N =may
N-mg =may =0
The acceleration in thedirection is zero; therefore, the magnitude ofrtbemal force is
just equal to the weight of the box. Turning navitiex direction, we see that we can
determine the acceleration since we now know thgnmade of the kinetic friction force.
Namely, the acceleration in the x direction is ggtial to the coefficient of kinetic
friction times the acceleration due to gravity.eThinus sign indicates that the direction
of the acceleration is to the left.
ay =~Hk Y
Note that the acceleration does not depend upomé#ss of the box! How does this
come about? The reason is that the net forceibgust the kinetic friction force which,
by its definition, is proportional to the normalté¢e. But the normal force here is equal
to the weight of the box; therefore, we see thatkihetic friction force is proportional to



the mass of the box. Consequently, when we watendNewton’s second law, we see
the mass cancels. Therefore, we see that theltns down with a constant acceleration
whose magnitude depends only on the coefficiektradtic friction.

D) Satic Friction

We’'ll now turn to another everyday example thiatsirates how we account for
static friction. Figure 6.2 shows a box is at @st horizontal floor being pulled gently
by a rope attached to it. The box does not movk arhit harder, and the box still does
not move. If we keep pulling harder and hardernavaly the box does move. How do
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Figure 6.2
A rope exerts a force on a box and the floor exeftsictional force on the box. The box is statioy
implying that the magnitude of the static frictibf@ce is equal to the magnitude of the tensiado

we describe what happened in terms of Newton’s?aw@learly the acceleration of the
box was zero until it began to move. We know trem Newton’s second law, that

until the box began to move, the total force onlibe was zero! Since the rope was
exerting a force on the box, directed to the rigintre must be have been another force of
the same magnitude that was directed to the Tits force is the static friction fordeit
opposes the horizontal motion that the tensionefevould have produced.

The magnitude of the tension force ./ 4
reflects how hard we pull. The harder we
pull, the bigger the tension gets, and
therefore, the bigger the frictional force
becomes, This dependence of the friction.
force on the tension is demonstrated in th
plot shown in Figure 6.3.

There is a limit to the force that friction ca

provide, though, and eventually we are ak , >
to move the box just by pulling harder. Figure 6.3 _ T
This maximum value of the force that static APlot of the magnitude of the fritional
friction can provide is once again just force as a function of the tension of the
proportional to the normal force. In this rope used in the example in Fig 6.2
case the constant of proportionality is




called thecoefficient of static friction, &, and depends only on the properties of the two
surfaces. This behavior of the static frictionciothat we have described is captured in
an inequality; namely, that the static frictionderisless than or equal to the coefficient
of static friction times the normal force. Note timportant difference between kinetic
fg < ugN
and static friction: the kinetic force is alwaysuafto kN, while the static force ISOT
always equal tas N. In fact, the static force is only equalgeN just before the surfaces
began to move. In all other cases, the statiefdess than this maximum force; just
as it was for the normal force and for the tens$ane, the magnitude of the static
frictional force must be determined from Newtoressnd lawThe static frictional force
issimply what is hasto be to do what it does!

We can summarize what we have learned aboutdnico far by completing the
plot we have created for static friction. As wergasel beyond the point at which the
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Figure 6.4

A plot of the magnitude of the fritional
force as a function of the tension of the
rope used in the example in Fig 6.2 The
foprce is discontinuous at the point where
the box begins to move.

box begins to move, we see that frictional foregstconstant ab increases. The
discontinuity at the point at which the box begimsnove indicates thats > pik.

E) Example: Box Siding Down Ramp

We’ll now do some examples that illustrate the aistnese frictional forces
within the framework of Newton’s laws. We willest with the calculation of the
acceleration of a box as it slides down a roughpram

Figure 6.5 shows a free-body diagram of all offthrees acting on the box. In the
absence of friction between the ramp and the lhexetare two forces acting on the box:
its weight (mg), which points downward, and the normal foktéhat the ramp exerts on
the box. The direction of this normal force isgEdicular to the ramp. Right away we
can see that there is a net force directed dowpltre which gives rise to the
acceleration down the plane. If there is frictmiween the box and the ramp, there will



be an additional force that opposes this motioheré&fore, this frictional force is directed
up the plane and has a magnitude equakly when the box is sliding.
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Figure 6.5

A free-body diagram for a box of mass m sliding dawamp. The
friction between the ramp and the box is specifigdhe coefficient of
kinetic frcition, £4.

We now need to choose a coordinate system. Asevgiomed last time, choosing one
axis to be parallel to the acceleration often sifiggl the calculation. Therefore, we will
choose our x-axis to point down the ramp and th&ig-to be perpendicular to the ramp.

Finally we write down Newton’s second law for beéliex andy directions. To
write down the y equation, we need to find the yaponent of the weight. Since the
normal force is perpendicular to the ramp and tegght is perpendicular to the
horizontal, we see that the angle between thesddrmees must also be equaléiothe
angle the ramp makes with the horizontal. Theggfae can use trigonometry to

> Fy =N-mgcosf =may, =0
determine that thg-component of the weight is just equal to the wetghesthe cosine
of the angle the ramp makes with the horizontalitidg down Newton’s second law for
the y direction, we obtain the magnitude of thenmarforce. This result holds for both
the friction and frictionless cases.
N = mgcosé

We can now obtain a value for the magnitude offtiséonal force from our
result for the magnitude of the normal force. kremponent of the weight is equal to
the product of the weight and the sine of the atiggeramp makes with the horizontal.
We can now write down Newton’s second law inxkdirection in terms of this frictional

> Fy =mgsind — g N = may
force and the component of the weight down the rakivie can substitute our result for
the normal force into this equation and then sédwehe acceleration. We obtain the



result that the acceleration is equal to the gdiméactor that is determined by the
coefficient of kinetic friction and the angle treamp makes with the horizontal.

a=g(sind - u cosb)
We can remove the frictional force by settpngequal to zero, to determine that the

acceleration in the absence of friction is justada the product of and the sine of the
angle the ramp makes with the horizontal.

F) Example: Box at Rest on Ramp

We've just determined the acceleration of a badirs down a ramp. In
particular, we see that the acceleration decrezs#se anglédecreases. If we make the
angle small enough, the frictional force on the fadk prevent it from accelerating at all!
At such an angle, what is the magnitude of theifnmal force?

To answer this question, we start with the fredybdiagram shown in Figure 6.6.

N = mgcosl

Figure 6.6
A free-body diagram for a box of mas=on a ramp whose

angle with the horizonta@,,,,,is the largest it can be to
prevent the box from sliding down the ramp..

We see that this diagram is essentially identizahat in Figure 6.5, as long as we just call
the frictional forcd. Since the box is not moving, we have a casgatic friction. The
magnitude of the static friction force must be deieed from Newton’s second law In
particular, the magnitude of the static frictiomde must be equal to the component of the
weight down the plane.

> Fy =mgsind-f =0
As we increasé, both the friction force and thecomponent of the weight increase. At
some anglédx, though, the static friction force can increasemawe and the block will
begin to slide. We can determifigx by setting the static friction force equal to its



maximum value gs N). Substituting this value for the frictional ferback into our
frax = #sN = fismg COSGmax

general equation, we obtain our result for the mmaxn angle the ramp can make with

the horizontal to prevent the box from sliding dotha ramp.

HSMg COSmax = MG SiNbmay
tanbmax = Us

G) Example: Car Rounding a Corner

We’'ll close this unit by doing one more examplealving friction, namely, that
of a car of masM rounding a circular turn of radil If the coefficient of static friction
between the tires and the roag#4s how fast can the car go around the turn without
skidding off the road?

Perhaps your first question here is why in thelevare we giving you the static
coefficient of friction when the car is clearly mog? The answer to this question is that
the tires are rolling: the surfaces of the tiresrawt sliding relative to the surface of the
road, since if they were, the car would alreadgkidding! During normal driving it is
the static friction between the tires and the rived makes a car speed up, slow down,
and turn corners!

We start, as always, by drawing a free body diadgia the car as shown in
Figure 6.7. From this diagram, we see it is jbstftictional force that is responsible

Figure 6.7
The free-body diagram for a car of masmoving at constant speedn a circle of radiugR..

for the centripetal acceleration of the car. New,choose thg-axis to point toward the
center of the circle to align it with the directiohthe acceleration. We choose yhaxis
to be vertically up.



Writing Newton’s second law for thedirection, we see that the magnitude of the
>Fy=N-mg=ma, =0
normal force is just equal to the weight of the cefriting Newton’s second law for the
x-direction, we see that the frictional force mustdgual to the mass of the car times the
Y Fy = =may
centripetal acceleration. We know the centripataleleration is equal to the square of

the speed divided by the radius of the turn. Tioeeeas the car’s speed increases, the
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frictional force must also increase. There igwtlthough, as to how much this frictional
force can increase. This limit is determined kg ¢befficient of static frictiorys. This
maximum frictional force then produces the maximeentripetal acceleration which
determines the maximum velocity. Therefore, we inbiae maximum speed that the car
frax = 4sN = usmg
2

V,
_ Ymax
Amax = R

f
Vmax =4/ @maxh = nrﬁlx R=,UsOR

can make the turn without skidding is proportiotealhe square root of the product of the
turning radius and the coefficient of static fricti This result makes sense: the car’s
maximum speed should increase if either the fiictrcreases or the turning radius
increases.




Main Points

* Friction Forces

Frictiond forces refer to the component of the conitact force between bvo srufirces that
is parailel to the surfiuces

+ Kinetic Friction 4
N
Kinetic friction exists between
surfices in relafive mofion . ; S
Kinetic Friction
'1;
The divection of kinefic friction i

abways opposes the relative motion Jiz Y

The magnitude of kinelic fricion is
proportiond fo the normd force
+ Static Friction

Stafic_ fricfion exists between
surfaces NOT in relafive motion

The divection of stafic_friction
aways oppaoses fhe relative motion

fhrat would exist fn the absence of
ﬁicﬁan Must be determined from
" Mewton's 2* Law if the static
friction force is not 3 maximum. |8 :
The magnifude of stafic_fricion Static Friction
nniist be determinead from Newion's fispN

second Iepyv, It mpcfomim valie s
propofional fo the normal force.

The stafic foree is what it has to be
fo do what it does!



