/. Work and Kinetic Energy

A) Overview

This unit introduces two important new concefitsetic energy andwork.
These concepts are defined in terms of the fundeheoncepts from dynamicfce
andmass) and kinematicsdjsplacement andvelocity). We will find that integrating
Newton’s second law through a displacement williteis an equation that links these
two concepts of kinetic energy and work. This dqune(called the work-energy theorem
or sometimes, the center of mass equation), ali®re easily answer many questions
that would be very difficult using Newton’s secdad directly

B) Work and Kinetic Energy in One Dimension

We begin our introduction of work and energy bysidering the simple one-
dimensional situation shown in Figure 7.1. Ackors applied to an object, causing it to
accelerate. We say that the force acting over tiauses the change in velocity. We can
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Figure 7.1
Aconstant forcd=, . is applied to a an object over a time interval (figro t,) that results in a change in its
velocity and in its displacement.
guantify this statement by integrating the forceravme to obtain the relationship
between this integral of the force over time areldhange in velocity.
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We could also describe this situation by saying the force acting throughdastance
caused the change in velocity. How do we quanhify description? Well, consider the
motion at time: in the next instant of timet, the velocity will change by an amouiv
which is equal to the acceleration tintés
dv = adt
In this same timeit, the position will change by an amount which isado the velocity
dx = vdt
timesdt. We apply Newton’s second law, to replace theekecation by the net force
divided by the mass and then combine the equat@mabminatedt and obtain the
equation:

v = 1 net X
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If we now integrate this equation, we obtain tHatrenship between the integral of the
net force over the displacement and the chandeeisquare of the velocity.
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We define the integral of the force over the disptaent to be therork done by the
force

XZ
W = [Fdx
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and the quantity %2 the mass times the velocity reglin be théinetic energy of the
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particle. Thus we see that in one dimension, thkkwlone on the object by the net force
is equal to the change in that object’s kineticrgpe Work and kinetic energy both are

measured in Joules, where 1 Joule is defined tbNyen.

We will do a simple example in the next sectiort thastrates the use of these concepts.

C) Example

Figure 7.2 shows a box of mass 6 kg that is iytat rest. A horizontal force of
magnitude 24 N is now applied and the box begimadge. We would like to determine
the speed of the box when it is at a distanceraffBom its initial position.
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Figure 7.2

A constant force o 24 N is applied to a box of nfakg that is initially at rest. What is the speéd
the box when it reaches a distance of 8m frontéttiag point?

How do we go about making this calculation? Weld first use Newton’s
second law to determine the acceleration, andtiserthis acceleration in one of our
kinematics equations to determine the time it takesavel 8 m, and then use another
kinematics equation to determine the speed atithes

There is, however, an easier way. Namely, wesaaply equate the work done
by the net force (which is just the applied foneetis case) to the change in the kinetic
energy of the box.

W =AK



Now, since the applied force is constant, we cka tboutside the integral, and then the
work done is just equal to the product of the aapforce and the distance, Since the
box was initially at rest, the change in kinetieregy of the box is just equal to its final
kinetic energy.

W=F qu —Xi) = 24N [Bm
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Consequently, we see that the final speed is équam/s.

We've just seen how helpful this connection betwidsenwork done and the
change in kinetic energy in one dimension canlherder to generalize this connection
to more than one dimension, we will need to introdineeconcept of the dot product of
two vectors, which we will do in the next section.

D) Dot Product

So far, all operations we have performed on vedtiave produced another
vector. When we add or subtract vectors, the résalother vector. When we multiply
a scalar by a vector, the result is also a vector.

How do we multiply two vectors? There are actually difeerent products of
two vectors. The cross product of two vectors predwmother vector and we will
discuss this operation later in the course. Ia sleiction we will introduce thaot product
of two vectors which produces a scalar.

The dot product of any two vectors is defined tahHseproduct of the magnitudes
of the vectors and the cosine of the angle betwsam s shown in Figure 7.3..

Therefore, if the two
vectors are parallel, the
dot product is equal to
the arithmetic product.

Dot Product

A-B= ABcos0
If the two vectors are
perpendicular, the dot
product is equal to
zero. If the two vectors
are anti-parallel, the dot

product is equal to Figure 7.3
minus the arithmetic The dot product of two vectors is defined to beaar that
product. The dot measures the projection of one vector along theroth

product of two vectors
is a measure of the projection of one vector albegother.

The dot product is used to define the compondntsdors. For example,fand
Ay are the dot products &f with the unit vectors in the x and y directionspectively.



Figure 7.4 shows two vectofsandB, defined in terms of their x and y components. If
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Figure 7.4

The representation of vectdrandB in terms of their components
(A, A) and B,,B,) using the dot product and the unit vect@rs)
along the X,y) axes.

we now take the dot product of these two vectoessee that the only terms that survive
are the products of the same components

A« B=ABy +AB,
In the next section, we will use the dot produatiédine the work done by a force

E) Work-Kinetic Energy Theorem

In an earlier section we determined that in omeedision, the integral of the net
force over the displacement of an object is prapoal to the change in the square of its
velocity We will now make use of the dot produrgeneralize this result to more than
one dimension.

We start by defining the work done by a force nrobject as the integral of the

dot product of the force and the displacement. cafesee from this definition that only
W =[Fed/

the part of the force that is parallel to the daspiment contributes to the calculation of
the work done by the force. For example if you pudox across a horizontal frictionless
floor, both the weight and the normal force areppeadicular to the displacement so that
neither of these forces does any work on the lamly the tension force has a
component in the direction of the displacemensly the tension force does any work
on the box.



Figure 7.5 shows a box being pulled up a frictisaleamp so that we have displacements
in two dimensionsx andy. We can now basically repeat the derivatiorhefdne

Figure 7.5
A free-body diagram for a box of massbeing pulled up a a ramp by a taut rope.

dimensional case for each component. That istarefsom the equations for the change
in velocity and displacement during a tiuite

dv, =a,dt dx = v, dt

dvy =aydt dy = vyat
Once again we apply Newton’s second law to repilaeecceleration by the net force
divided by the mass and combine the equationgrtorgltedt and obtain two equations,
one for each dimension.

We now integrate each equation and add them torobta final result:

mUdeVx + nydVyJ = | (Fret X + Fret  dy)
The left hand side of the equation is equal toctienge in kinetic energy of the box. The
right hand side of the equation is the work don¢heynet force, since the dot product
can be expanded as the sum of the products obtheanents.

AK =W gt

We now see that defining the work in terms of tbegtoduct of the force and the
displacement allows us to generalize our one-dimeakresult. The change in the
kinetic energy of an object is equal to the work done on that object by the net force. We
call this statement thé&/rk Kinetic Energy Theorem. In the next few sections we will
explore the work done by several forces.



F) Examples. Work Done by Gravity Near the Surface of the Earth
Figure 7.6a shows a masdbeing moved along some arbitrary path connecting
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Figure 7.6b
The work done by the weight force is calculated by
approximating the path by a series of infinitesimal
horizontal and vertical segments. The only norezer
contributions come from the vertical segments.
two fixed points near the surface of Earth. We twwartalculate the work done by
gravity along this path. We will first approximdtee path as a series of infinitesimal
straight line segments along the horizontal anticadrdirections as shown in Figure
7.6b.. Now the work done along all of the horizbdsiegments is zero since the force (the
weight) is always perpendicular to the directiorir@ horizontal segment. Therefore, the
total work done by gravity along this path is jtiet sum of the work done by gravity
along the vertical segments. Since the force{thight) points down and the vertical
segmentdy) points up, the dot product of these two vectsisist equal torag dy.
Therefore, the total work done by gravity along pla¢h is just equal to minus the product
of the weight and the total vertical displacement.

W = -mgAy
Note that this formula for the work done by the gieidoesiot depend of the path taken,
but only on the difference in height of the initeadd final points. When the work done
by a force during some motion only depends on tiipeints of the motion, but not on
the details of the path, we say that the foraoiservative. A consideration of
conservative forces will lead us to the importaomiaept of potential energy in the next
unit.

Figure 7.6a

An object of massnis moved along an
arbitrary path between two fixed points
separated by a vertical distange

We will now use the result for the work done bg theight in an example that
illustrates the power of the work-kinetic energgdahem. Figure 7.7 shows two balls
released at the same time from the same hhigkine ball simply falls with constant
acceleration g. The other skids down a frictioglesrved surface. The free fall problem
is one we've solved many times; we know the veloaitd position of the ball at any
time. We use this information to determine howgléime ball is in the air and with what
velocity it hits the ground. The skidding ball ksoto be a much more difficult problem.



The net force here is certainly not constant! réfage, we cannot use our
kinematic equations for constant acceleratiomdeéd, finding the position and velocity
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Figure 7,7
Two balls are dropped at the same tiem from the dagight. Ball 1 falls freely
while Ball 2 skids down a frictionless curved suda

of the skidding ball at any time is difficult. Hewer, we can use the work-kinetic energy
theorem to easily find the final velocity.

Only two forces act on the skidding ball: the natforce provided by surface,
and the weight of the ball. Now, the ball alwaysves parallel to the plane. The normal
force is always perpendicular to the plane. Theegfwork done by the normal force,
given by the dot product of the normal force areldisplacement is zero!

Consequently, the work done by the net force rejesit equal to the work done by the
weight:

W = -mgAy
Applying the work-kinetic energy theorem, we seat tthe final speed of the skidding
ball is exactly the same as the final speed fodtiopped ball!
- mghy =3 v,

Vo =42g8y

We will close this unit with a discussion of two ra@xamples of the work done by
conservative forces

G) Work Done by a Variable Force: Spring

We have calculated the work done by the weighgrestant force, when the
orientation of the path relative to the force wharmging. We will now calculate the work
done by a spring in one dimension. In this caseptientation of the path relative to the
force is simple, but the magnitude of the forcengjes as we move.

We define the origin or the coordinate systemawespond to the e relaxed
length of the spring as shown in Figure 7.8. Tdred exerted by the spring on the object
attached to its end as a function of position gpprtional to the extension or



compression of the spring. As we move the objetitvben two positions; andx,, the
force on the object clearly changes. Breaking tbgament into tiny steps we see that
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Figure 7.8

A spring with spring constant k exerts a restofirge on an object of mass The coordinate
system is defined such that 0 corresponds to the relaxed length of the sprihg calculate the
work done by the spring as the object moves betweerpositionsx, andx,, we must integrate
the varying restoring force from to x,..

the work done by the spring along each step witlethel on the position : To find the total
work done we need to integrate this expression &t andx,.

X2
W 5 = =k [ xdx = ~2k(x5 ~{)
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Figure 7.9 shows a plot of the force as a funatibdisplacement as the spring is moved
from x; toxo. The area under the curve represents the work dgrthe force.

Note that the formula for the F(x)
work done by a spring that we 4
just derived depends only on the
endpoints of the motiorx; and

Xo. In fact, if we first stretch the
spring from its equilibrium
position, we see that the spring
force points in the opposite
direction to the displacement an
therefore does negative work. i
we then compress the spring
back to its equilibrium position, Figure 7.9

the spring force has the same A plot of the force exered by the spring in Fig @3
direction, but the displacement is a function of the extension of the spring. Thekvor
now in the opposite direction so done by the spring as the object is moved frpno
that the spring force does X, is given by the shaded area under the curve.
positive work. In fact the

magnitudes of these negative and positive workeaquel, so that we see that when the
spring is returned to its original position, the werk done is zero, the signature of a
conservative force.
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H) Work Done by Gravity Far From Earth
As a final example, we will consider the work ddregravity on an object of
massm that moves in three dimensions along some argiprath between two fixed
pointsry andr, that are far from the surface of Earth as showFigre 7.10. In this
case both the direction of path relative to theaion of the force, as well as the
magnitude of the force, can change along the path.

Figure 7.10

To calculate the work done by gravity as a nmass moved along

the curved path shown, we need to evaluate anraltegwhich the
magnitude of the forcE ., is changing as is the angle between the
force and the path element.

The magnitude of the gravitational force that theleexerts on this object is given by
the universal gravitational force law; the direatinf this force is always radially inward,
towards the center of the Earth. Once again,amebceak the path betweepandr

into tiny steps as shown in Figure 7.11. . One siep is shown magnified in the Figure.
This step is in turn broken into two even smadkeps, one that is parallel to the radial
direction and one which is perpendicular to thealadirection. Since the force is radial,
the work done when moving along the perpendiculgy s zero! The work done when
moving along the radial step is just equal to thred at that point times the radial
displacement.

M gM

r2




2 GM_ g

ravity 2
gravity e

FY
-

| S ;

Figure 7.11

To evaluate the work done by gravity, we approxarhe curved path as a series of infinitesimal
elements each of which are in turn broken down twtmelements, one radial and one tangential.
The work done along each tangential element is gieae the force is radial. Consequently, the
work done by gravity only depends prandr,, the radial distances of the endpoints of the .path

The total work is therefore just the sum of thekwdone by all of the radial steps.
To make this sum, we do the integral and obtairresult: that the work done by the

r.Z
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gravitational force as an object is moved fronto r, is proportional to X4 — 1f;. Once

again we see that the work depends only on theadnidpand not on the specific path,
demonstrating that the gravitational force is irdlaeconservative force.




Main Points

Work and Kinetic Energy Definitions

The Kinefic Energy of an objecit is definead fo be % fhe K=
product of the mass and the square of ifs velocily.

Tiw Work done by a force as an object is moved #
bepveen o poinits along some path is defined fo eb W sy = I Fdl
the dot product of the foree with the dispiacement i
along the path bebveen fhose two poinis.

Work-Kinetic Energy Theorem

Infegrating Newlon’s second low, we obxin the

waork-kinetic energy theore: that the work done bty W - AK
the net force on an object as ftmoves between o Net ™
Ppointy is agual fo the change in {fs kinefic energy.

Conservative Forces

Conservafive forces aredefined fo be fhose forces fn which the work done by fhem
does NOT depend on the pafit, only on the endpoinis.

Work done by the Gravitational Force

The gravitational force is a W = —mgAy (near Earth)

conserative force

1]

H:f'_,g - G,’WEIH R i (general expression)
g
Work done by the Spring Force
The spring force isa
conserative force L. s
Wi, = = k(x5 —xi)



