
7.  Work and Kinetic Energy 
 
A) Overview 
  This unit introduces two important new concepts: kinetic energy and work.  
These concepts are defined in terms of the fundamental concepts from dynamics (force 
and mass) and kinematics (displacement and velocity).  We will find that integrating 
Newton’s second law through a displacement will result in an equation that links these 
two concepts of kinetic energy and work.  This equation (called the work-energy theorem 
or sometimes, the center of mass equation), allows us to easily answer many questions 
that would be very difficult using Newton’s second law directly 
 
B) Work and Kinetic Energy in One Dimension 
 We begin our introduction of work and energy by considering the simple one-
dimensional situation shown in Figure 7.1.    A force is applied to an object, causing it to 
accelerate.  We say that the force acting over time causes the change in velocity.  We can 

quantify this statement by integrating the force over time to obtain the relationship 
between this integral of the force over time and the change in velocity.   
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We could also describe this situation by saying that the force acting through a distance 
caused the change in velocity.  How do we quantify this description?  Well, consider the 
motion at time t: in the next instant of time dt, the velocity will change by an amount dv 
which is equal to the acceleration times dt.  

adtdv =  
In this same time dt, the position will change by an amount which is equal to the velocity 

vdtdx =  
 times dt.  We apply Newton’s second law, to replace the acceleration by the net force 
divided by the mass and then combine the equations to eliminate dt and obtain the 
equation: 
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Figure 7.1
Aconstant force Fnet is applied to a an object over a time interval (from t1 to t2) that results in a change in its 
velocity and in its displacement.



If we now integrate this equation, we obtain the relationship between the integral of the 
net force over the displacement and the change in the square of the velocity. 
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We define the integral of the force over the displacement to be the work done by the 
force 

∫≡
2

1

x

x
FdxW  

and the quantity ½ the mass times the velocity squared to be the kinetic energy of the 
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particle.  Thus we see that in one dimension, the work done on the object by the net force 
is equal to the change in that object’s kinetic energy.  Work and kinetic energy both are 
measured in Joules, where 1 Joule is defined to be 1 N-m.  
 
We will do a simple example in the next section that illustrates the use of these concepts. 
 
C) Example 
 Figure 7.2 shows a box of mass 6 kg that is initially at rest.  A horizontal force of 
magnitude 24 N is now applied and the box begins to move.   We would like to determine 
the speed of the box when it is at a distance of 8 m from its initial position.    

 
 How do we go about making this calculation?   We could first use Newton’s 
second law to determine the acceleration, and then use this acceleration in one of our 
kinematics equations to determine the time it takes to travel 8 m, and then use another 
kinematics equation to determine the speed at this time. 
 
 There is, however, an easier way.  Namely, we can simply equate the work done 
by the net force (which is just the applied force in this case) to the change in the kinetic 
energy of the box.   

KW ∆=  

Figure 7.2
A constant force o 24 N is applied to a box of mass 6 kg that is initially at rest.  What is the speed of 
the box when it reaches a distance of 8m from its starting point?  



Now, since the applied force is constant, we can take it outside the integral, and then the 
work done is just equal to the product of the applied force and the distance,   Since the 
box was initially at rest, the change in kinetic energy of the box is just equal to its final 
kinetic energy.   

2
2
12

2
1 6

824)(

ff

if

vkgmvK

mNxxFW

⋅⋅==∆

⋅=−⋅=
 

Consequently, we see that the final speed is equal to 8 m/s. 
 
 We’ve just seen how helpful this connection between the work done and the 
change in kinetic energy in one dimension can be.  In order to generalize this connection 
to more than one dimension, we will need to introduce the concept of the dot product of 
two vectors, which we will do in the next section. 
 
D) Dot Product 
 So far, all operations we have performed on vectors have produced another 
vector.  When we add or subtract vectors, the result is another vector.  When we multiply 
a scalar by a vector, the result is also a vector.   
 
 How do we multiply two vectors?  There are actually two different products of 
two vectors.  The cross product of two vectors produces another vector and we will 
discuss this operation later in the course.  In this section we will introduce the dot product 
of two vectors which produces a scalar. 
 
 The dot product of any two vectors is defined to be the product of the magnitudes 
of the vectors and the cosine of the angle between them as shown in Figure 7.3..   
 
Therefore, if the two 
vectors are parallel, the 
dot product is equal to 
the arithmetic product. 
 
 If the two vectors are 
perpendicular, the dot 
product is equal to 
zero.  If the two vectors 
are anti-parallel, the dot 
product is equal to 
minus the arithmetic 
product. The dot 
product of two vectors 
is a measure of the projection of one vector along the other. 
 
 The dot product is used to define the components of vectors.  For example, Ax and 
Ay are the dot products of A with the unit vectors in the x and y directions, respectively.   

Figure 7.3
The dot product of two vectors is defined to be a scalar that 
measures the projection of one vector along the other..



Figure 7.4 shows two vectors A and B, defined in terms of their x and y components. If 

we now take the dot product of these two vectors, we see that the only terms that survive 
are the products of the same components 
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In the next section, we will use the dot product to define the work done by a force 
   
E) Work-Kinetic Energy Theorem  
 In an earlier section we determined that in one dimension, the integral of the net 
force over the displacement of an object is proportional to the change in the square of its 
velocity  We will now make use of the dot product to generalize this result to more than 
one dimension. 
 
 We start by defining the work done by a force on an object as the integral of the 
dot product of the force and the displacement.  We can see from this definition that only  
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the part of the force that is parallel to the displacement contributes to the calculation of 
the work done by the force.  For example if you pull a box across a horizontal frictionless 
floor, both the weight and the normal force are perpendicular to the displacement so that 
neither of these forces does any work on the box.  Only the tension force has a 
component in the direction of the displacement, so only the tension force does any work 
on the box. 
 
  

Figure 7.4
The representation of vector A andB in terms of their components 
(Ax, Ay) and (Bx,By) using the dot product and the unit vectors         
along the (x,y) axes.
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Figure 7.5 shows a box being pulled up a frictionless ramp so that we have displacements 
in two dimensions, x and y.   We can now basically repeat the derivation of the one  

 
dimensional case for each component.  That is, we start from the equations for the change 
in velocity and displacement during a time dt.  
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Once again we apply Newton’s second law to replace the acceleration by the net force 
divided by the mass and combine the equations to eliminate dt and obtain two equations, 
one for each dimension.   
  dxFdvmv xnetxx =   dyFdvmv ynetyy =  

We now integrate each equation and add them to obtain our final result: 
[ ] )( dyFdxFdvvdvvm ynetxnetyyxx +∫=∫+∫  

The left hand side of the equation is equal to the change in kinetic energy of the box.  The 
right hand side of the equation is the work done by the net force, since the dot product 
can be expanded as the sum of the products of the components. 

netWK =∆  

We now see that defining the work in terms of the dot product of the force and the 
displacement allows us to generalize our one-dimensional result.  The change in the 
kinetic energy of an object is equal to the work done on that object by the net force.  We 
call this statement the Work Kinetic Energy Theorem.  In the next few sections we will 
explore the work done by several forces.   
  
 

Figure 7.5
A free-body diagram for a box of mass m being pulled up a a ramp by a taut rope.  



F) Examples:  Work Done by Gravity Near the Surface of the Earth 
 Figure 7.6a shows a mass m being moved along some arbitrary path connecting 

two fixed points near the surface of Earth.  We want to calculate the work done by 
gravity along this path.  We will first approximate the path as a series of infinitesimal 
straight line segments along the horizontal and vertical directions as shown in Figure 
7.6b..  Now the work done along all of the horizontal segments is zero since the force (the 
weight) is always perpendicular to the direction of the horizontal segment.  Therefore, the 
total work done by gravity along this path is just the sum of the work done by gravity 
along the vertical segments.  Since the force (the weight) points down and the vertical 
segment (dy) points up, the dot product of these two vectors is just equal to -mg dy.  
Therefore, the total work done by gravity along the path is just equal to minus the product 
of the weight and the total vertical displacement. 

ymgW ∆−=  
Note that this formula for the work done by the weight does not depend of the path taken, 
but only on the difference in height of the initial and final points.  When the work done 
by a force during some motion only depends on the endpoints of the motion, but not on 
the details of the path, we say that the force is conservative.  A consideration of 
conservative forces will lead us to the important concept of potential energy in the next 
unit.   
 
 We will now use the result for the work done by the weight in an example that 
illustrates the power of the work-kinetic energy theorem.  Figure 7.7 shows two balls 
released at the same time from the same height.h.  One ball simply falls with constant 
acceleration g.  The other skids down a frictionless curved surface.  The free fall problem 
is one we’ve solved many times; we know the velocity and position of the ball at any 
time.  We use this information to determine how long the ball is in the air and with what 
velocity it hits the ground.  The skidding ball looks to be a much more difficult problem.   
 

Figure 7.6a
An object of mass m is moved along an 
arbitrary path between two fixed points 
separated by a vertical distance ∆y.
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Figure 7.6b
The work done by the weight force is calculated by 
approximating the path by a series of infinitesimal 
horizontal and vertical segments.  The only non-zero 
contributions come from the vertical segments. 



 The net force here is certainly not constant!  Therefore, we cannot use our 
kinematic equations for constant acceleration.    Indeed, finding the position and velocity 

of the skidding ball at any time is difficult.  However, we can use the work-kinetic energy 
theorem to easily find the final velocity.   
 
 Only two forces act on the skidding ball: the normal force provided by surface, 
and the weight of the ball.  Now, the ball always moves parallel to the plane.  The normal 
force is always perpendicular to the plane.  Therefore, work done by the normal force, 
given by the dot product of the normal force and the displacement is zero!   
Consequently, the work done by the net force here is just equal to the work done by the 
weight: 

ymgW ∆−=  
Applying the work-kinetic energy theorem, we see that the final speed of the skidding 
ball is exactly the same as the final speed for the dropped ball! 
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We will close this unit with a discussion of two more examples of the work done by 
conservative forces. 
 
G) Work Done by a Variable Force: Spring 
 We have calculated the work done by the weight, a constant force, when the 
orientation of the path relative to the force was changing. We will now calculate the work 
done by a spring in one dimension. In this case, the orientation of the path relative to the 
force is simple, but the magnitude of the force changes as we move.  
 
 We define the origin or the coordinate system to correspond to the e relaxed 
length of the spring as shown in Figure 7.8.  The force exerted by the spring on the object 
attached to its end as a function of position is proportional to the extension or 

Figure 7,7
Two balls are dropped at the same tiem from the same height.  Ball 1 falls freely 
while Ball 2 skids down a frictionless curved surface..



compression of the spring.  As we move the object between two positions x1 and x2, the 
force on the object clearly changes. Breaking the movement into tiny steps we see that  

 
the work done by the spring along each step will depend on the position : To find the total 
work done we need to integrate this expression between x1 and x2. 
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Figure 7.9 shows a plot of the force as a function of displacement as the spring is moved 
from x1 to x2.  The area under the curve represents the work done by the force. 
 
Note that the formula for the 
work done by a spring that we 
just derived depends only on the 
endpoints of the motion, x1 and 
x2.  In fact, if we first stretch the 
spring from its equilibrium 
position, we see that the spring 
force points in the opposite 
direction to the displacement and 
therefore does negative work.  If 
we then compress the spring 
back to its equilibrium position, 
the spring force has the same 
direction, but the displacement is 
now in the opposite direction so 
that the spring force does 
positive work.  In fact the 
magnitudes of these negative and positive works are equal, so that we see that when the 
spring is returned to its original position, the net work done is zero, the signature of a 
conservative force.    
 
  
 

Figure 7.8
A spring with spring constant k exerts a restoring force on an object of mass m.  The coordinate 
system is defined such that x = 0 corresponds to the relaxed length of the spring.  To calculate the 
work done by the spring as the object moves between two positions, x1 and x2, we must integrate 
the varying restoring force from x1 to x2..

Figure 7.9
A plot of the force exered by the spring in Fig 7.8 as 
a function of the extension of the spring.  The work 
done by the spring as the object is moved from x1 to 
x2 is given by the shaded area under the curve. 



H) Work Done by Gravity Far From Earth 
 As a final example, we will consider the work done by gravity on an object of 
mass m that moves in three dimensions along some arbitrary path between two fixed 
points r1 and r2 that are far from the surface of Earth as shown in Figure 7.10.   In this 
case both the direction of path relative to the direction of the force, as well as the 
magnitude of the force, can change along the path.  

The magnitude of the gravitational force that the earth exerts on this object is given by 
the universal gravitational force law; the direction of this force is always radially inward, 
towards the center of the Earth.   Once again, we can break the path between r1 and r2 
into tiny steps as shown in Figure 7.11. . One such step is shown magnified in the Figure. 
This step is in turn  broken into two even smaller steps, one that is parallel to the radial 
direction and one which is perpendicular to the radial direction. Since the force is radial, 
the work done when moving along the perpendicular step is zero!  The work done when 
moving along the radial step is just equal to the force at that point times the radial 
displacement.   
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Figure 7.10
To calculate the work done by gravity as a mass m is moved along 
the curved path shown, we need to evaluate an integral in which the 
magnitude of the force Fgravity is changing as is the angle between the 
force and the path element.



 The total work is therefore just the sum of the work done by all of the radial steps.   
To make this sum, we do the integral and obtain our result: that the work done by the 
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gravitational force as an object is moved from r1 to r2 is proportional to 1/r2 – 1/r1. Once 
again we see that the work depends only on the endpoints and not on the specific path, 
demonstrating that the gravitational force is indeed a conservative force.

Figure 7.11
To evaluate the work done by gravity, we approximate the curved path as a series of infinitesimal 
elements each of which are in turn broken down into two elements, one radial and one tangential.  
The work done along each tangential element is zero since the force is radial.  Consequently, the 
work done by gravity only depends on r1 and r2, the radial distances of the endpoints of the path.  



 

 
 
 
 

 


