8. Conservative Forcesand Potential Energy

A) Overview

This unit introduces an important new concepteptial energy. In particular,
for any conservative force, we can define the ckangotential energy of an object as
minus the work done by this force. In this course,deal with two conservative forces,
gravity and springs. After defining the potengakergy associated with each of these
forces, we can rewrite the work-kinetic energy tieenso that it expresses a conservation
law: the conservation of mechanical energy thatiepgvhenever the only forces that do
work in the situation are conservative forces.

B) Conservative Forces

In the last unit we introduced the concept of waska force acting over some
distance, and we showed that work done on an olwéathange its kinetic energy. We
evaluated the work done by two of the forces weeldiscussed so far, gravity and
springs, and we have found that for these forteswork done on an object by these
forces depends only on the starting and endingtpaoiinthe motion, and not on the path
taken between these points. Path 1
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endpoints. Now we can see that the work done arthendlosed loop is equal to the sum
of the work done fronx; to x, along the top segment and the work done frkgio x;
along the bottom segment. This sum is zero!

C) Potential Energy

In general, the work done by a force on an oljjetiveen two points does depend
on the path taken by the object between the twotpoiFor the special case of
conservative forces, we have seen that the work doedepend on the path. Therefore,
we can define, for conservative forces, an assedtpitential energyhat, for a given
object, depends only on its location. In particiwehen a conservative force acts on an
object as it moves between two points, we defieedefine thehangein potential
energy associated with that force as minus the worle by that force between those two
points.
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At this point, this definition of potential energyust seem quite arbitrary to you. If we

look at this definition in the context of the wdklietic energy theorem, however, it will
begin to make sense.

Recall the example from the last unit shown inuFeg8.2 in which we applied the
work-kinetic energy theorem to determine that gheesl that a ball, released from rest,
attains while sliding down a frictionless surfacgyodepends on the change in height of
the ball and not on the details of the surfacepdrticular, we found that the change in

hi |

Figure 8.2
The speed of the ball at the botton of the frictemsl surface depends only
on h, the change in height of the ball.

kinetic energy of the ball was equal to the worke&by the gravitational force. By our
definition, the change in gravitational potentiakagy is equal to minus the work done
by the gravitational force.
AU gravity = “Wgravity = —(-mgah) = mgAh
Consequently, we see that the change in potemtgabg is just equal to the product of
the weight of the ball and the change in heightveen the two points. Therefore, we
see that the change in kinetic energy is just efqualinus the change in potential energy.
AK =Wyravity = ~AU gravity




Whatever kinetic energy the ball gains is exaatjyad to the potential energy that the
ball loses. If we define the total mechanical ggeasf an object as the sum of its kinetic
and potential energy, then, in this case, we saethle total mechanical energy of the ball
was conserved. That is, at any point during théanaf the ball, the sum of its kinetic
energy plus its gravitational potential energy astant.

AEmechanical= A(K +U gravity) =AK +AU grayity =0

D) Conservation of Mechanical Energy

In the lexample shown in Figure 8.2, we demonattéhat the total mechanical
energy of the ball, the sum of its kinetic energy @otential energy, was constant
throughout its motion. We will now examine the wdinetic energy theorem to
determine exactly when mechanical energy is coeserv

The work-kinetic energy theorem was derived froewitbn’s second law and
states that the change in an object’s kinetic gnisrgqual to the work done by the net
force on that object. We can expand the work dpnthe net force as the sum of the
work done by conservative forces and the work dpneon-conservative forces.

AK =Whet =We +Wnc

In this course, the onlgonservativdorces we encounter are theavitational forceand
thespring force All other forces, for example, friction, tensjaic.., are non-
conservative forces. If we now move the work dbpeonservative forces term to the
left hand side of the equation and apply the diédiniof potential energy, we can see that
the sum of the change in kinetic energy and thaghan potential energy is equal to the
work done by the non-conservative forces.

AK =W¢ =AK + AU = AEqechanical= WNe
Now the sum of the change in kinetic energy anccttamge in potential energy is
defined to be the change in the mechanical endrthembject. Therefore, we see that
whenever the work done by non-conservative forseio, the change in mechanical
energy is zero. That is, tineechanical energis conservedvhenevethe work done by
all the non-conservative forces is zero

We will encounter many situations in this coursevhich the work done by the
non-conservative forces is zero. In these casesan apply the conservation of
mechanical energy to answer easily many questi@atanight be difficult to answer
using Newton’s laws directly. Indeed, the constoveof mechanical energy gives us
the relationship between the location of the obgext its speed.

We willl now do a couple of examples that illuséréghe power of this
conservation of mechanical energy law.

E) Gravitational Potential Energy

We've defined the change in potential energy asusithe work done by a
conservative force between two points. We can edrthiis change in potential energy to
a potential energy function defined at any singlipby simply choosing some specific
point as the zero of potential energy. For exampéecan define the gravitational



potential energy of a massnear the surface of the Earth as simpbh whereh is the
height of the mass above a convenient, but arjtpint which we can choose to be the
zero of potential energy as shown in Figure 8.3.

U, =mgh,
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Figure 8.3

The gravitational potential energy U can be
defined at any point by choosing a convenient
height to have U = 0.

The table below shows the form of the potentiakrgnéunction for all conservative
forces we will deal with in this course. The ardiy constanty appears in the general
form for the potential energy function since itlvelways cancel when we calculate the
physically significanthangein potential energy.
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We will now do an example using the potential ggexssociated with the

universal gravitational force. Suppose we releaball from a spot far away from Earth

and want to know how fast will it be moving whetlintally gets here. If the ball is
released from rest its change in kinetic energyaportional to the square of its final

speed.
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Now the change in its potential energy can be fausidg the expression shown in the
table. Since the initial distance is far from ##th, we can approximate one over the
initial distance as zero. What is the final dis&h To determine this distance we need to
recall that when we discussed the application offde’s universal gravitational force

law between an object and the Earth, we said tkeatould consider all of the mass of the
Earth to be located at its center. Thereforefitted distance here must be equal to the
radius of the Earth!

AU - _G M Emball

Re
Applying the conservation of mechanical energyobtain the result that the final speed
is proportional to the square root of the ratidhef mass of the Earth to its radius. .

AK +AU =0 = Vi = /ZGME
Re

It is not too hard to see that we would have adiaeexactly the same answer if we had
started by asking another very interesting quesiighat is the initial speed we need to
launch something with from the surface of Earthhed it never returns? In other words,
after being launched from Earth, the object sldawn and eventually stops when it is
infinitely far away. This speed is called the Eartbscape velocity, and when you plug in
the numbers you find that it is about 11,200 m/s!

F) Vertical Springs
We have already derived an expression for thegdanpotential energy of a
spring.
_ 2_ 2
AU gpring —%k(x = Xg)

If we choosex to be the equilibrium length of the springge obtain a simple parabola
centered on the origin as shown in Figure 8.4. i
Spring 4
Suppose we now hang a spring vertically.
As long as we assume the spring is massless, it
will have the same equilibrium length as before,
and the equation for its change in potential
energy will have exactly the same form as long

as we choosw to be its equilibrium length.

Now suppose we hang a box of massn the
end of the spring. This will move the equilibrium i

position of the system downward to the point  Figure 8.4 X
where the upward force of the spring balances Defining the potential energy of a spring
the weight of the box as shown in Figure 8.5.  to be equal to zero at its equilibrium
The amazing thing is that the total change in  position results in the potential energy
potential energy of the system due to the spring function being a parabola.

andto gravity combinedtill has the same simple

parabolic form as before as long as we make ousunements relative to the new
equilibrium positiony.. We will now prove this claim.




Call the displacement from the new equilibrium

positiony’. We can now write down the expression

for the change in potential energy of the spring as

we move a distanoﬁ from equilibrium position. ¥y

AU gpring = k((y Ye) - ye)
We can simplify this expressmn to obtain two terms

AU gpring = =1 ky +kyey'

The first term is what we want. We can rewrite the
second term by replacing thg factor (the
magnitude of the force exerted by the spring) ey th =~ ?-I
weight of the box. Once we make this replacement, . _ " ¥ _ _ _ _ _
we see that the second term is actually equal to '
minus the change in potential energy due to gravity

Kyey' =mgy' = -AU gravity
Therefore, if we move this second term to the left
hand side of the equation, we obtain the expression
that we want:

AU spring +AU gravity — ky'z Figure 8.5 ] ]
A mass M is hung from a spring
stretching it a distancg, from its
unstretched length.

Namely, the sum of the change in potential energy st
due to the spring and the change in the potential
energy due to gravity,e., the change in thietal
potentialenergyof the system is just equal to the usual expredsiothe change in the
potential energy of a spring if we choose the zdnootential energy to be the
equilibrium position when the box is attached!

— 1.2
AUtotal —Eky

The beautiful bottom line here is that the chamgedtential energy of masses hanging
from vertical springs have the same simple fornaslanasses attached to horizontal
springs, just as long as we measure the lengtheo$pringelative to itsequilibrium
lengthin both cases.

G) Non-Conservative Forces
We will close this unit with a brief discussionmdn-conservative forces in the
context of the work-kinetic energy theorem and pbé& energy.

Figure 8.6 shows a box being pulled up a ramp tjinadisplacememdx. The
forces acting are the weight, the tension, the abforce and the kinetic friction force. If
we write down the work-kinetic energy theorem agoblio the box as a single rigid object
and expand the work done by the net force as timeec$uhe works done by the individual
forces, we obtain:.

AK =W,

gravity

+W,
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+W,

normal

+W

friction



The only conservative force acting is the weighte can bring its term to the left hand
side of the equation and call it the change in mideenergy.
AK + AU =W, con T W +W

gravity tension normal friction

The left hand side of the equation is now the changdhe total mechanical energy of the
box. The right hand side of the equation is tha sfithe work done by the non-
conservative forces. It's clear now that the wdoke by the non-conservative forces on
an object is the thing thahangeghe total mechanical energy of an object. No ipidé
energy can be associated with a non-conservatice feecause the work it does depends
not only on the endpoints of the movement but alsthe exact path taken.

Figure 8.6
The forces acting on a box being pulled through a
displacementix up a ramp are the tensidnthe weight
mg, the normal forcéN, and the kinetic friction forcg.

In the next unit we will discuss in detail the edition of the work done by non-
conservative forces, especially friction, thatasponsible for the change in the
mechanical energy of an object.



Main Points

+ Potential Energy

The change in polential energy Hht s associaled

willh a specific conservative force as an obiject moves AIT-TT -] =-W
bebveen two locations is defined as minus the work B 4 4->8
done by that force bebveen those two locafions.

A polential energy fiinction can be deffned for the
object and the parficuiar force by choosing « specific U= —W:._,,.u + U .
locafion as the jero of fhe function.

* Conservation of Mechanical Energy

The mechanical energy of an object is deffned fo Cx 7
be the sum of s kinetic and potential energies | Ertechanica =K +U

The Work-Kinetic Energy Theorem can be

reformuliated as a conservation low. Whenever, AE - 5
fiie work done by non-conservafive forces fs ’ Mechanical ~ |
ZERO, the mechanical energy of that object is {When the work done by non-conservative

conserved forces is zero.}



