9. Work and Potential Energy

A) Overview

This unit is concerned with two topics. We witbt discuss the relationship
between the real work done by kinetic friction odedilormable body and the calculation
that we can perform using the work-kinetic enettggorem to determine the change in
the mechanical energy due to kinetic friction. Wik then determine how to describe a
conservative force directly in terms of its potah@nergy function. We will use this
understanding to develop a description of the dgquuim conditions for objects acted on
by conservative forces.

B) Box Siding Down a Ramp
Figure 9.2 shows a box sliding down a ramp. it Bnwe identified the forces
acting on the box as shown in the figure and agpliewton’s second law to determine
that the acceleration of the box was proportiondahe acceleration due to gravity, with
the constant of proportionality being determinedHhsy angle of the ramp and the
coefficient of kinetic friction.
a=g(sin@ - uk cosb)
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Figure 9.1
A box slides down a ramp. Three forces act orbthe Newton’s
second law can be used to determine the accelemitiihe box.

Since this acceleration is constant, we can appikimematics equations we derived for
such a motion to determine the speed of the baxedaches the end of the ramp, if it
were released from rest.
v2 = 2alx
vZ = 2gh(L- pk cotb)
We can also apply the work-kinetic energy theoreme htreating the box as a patrticle.
In this case, the change in the mechanical endrthedox is equal to the work done by



the non-conservative forces. The normal force amesork since it is perpendicular to
the motion. Therefore, the change in mechanicatgnof the box is just equal to the the
integral of the frictional force over the displacamh
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Writing the friction force in terms of the coeffesit of kinetic friction and the normal

force and applying Newton’s second law to relatertormal force to the weight, we can
obtain an expression for the final velocity.
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V2 = 2gh(1- uk cotd)
This expression that we have obtained from the vkarktic energy theorem is identical
to that obtained by using Newton’s second law asust be! In the next section we will
discuss the connection between the work done Istikifriction when we consider the

box to be a deformable body and the calculatiortavemake to correctly determine the
change in the mechanical energy of such an object.

C) Work Done by Kinetic Friction
Figure 9.2 shows a box with an initial velooityskidding across the floor,
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Figure 9.2
A box, with initial velocityv, skids across a floor and comes to rest a distBricem its initial position.
coming to rest a distan& from its initial
position. We can use the free-body diagram
shown in Figure 9.2 to determine the acceleratior N
of the box. We can then use a constant '
acceleration kinematic equation to determine the

distanceD.
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2/ 9 The free-body diagram for the sliding box

in Fig 9.1



We can also calculate this distance using the or&tic energy theorem by
setting the change in kinetic energy equal to theroscopic work done by kinetic
friction.
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We've used the words “macroscopic work” here tadate that we are interested only in
the macroscopic motion of the box. To obtain thiion, we have treated the box as a
single object. At the microscopic level, the box does have dafle surfaces and a
calculation of the microscopic work done by frictimust account for the interactions at
these surfaces. The good news is that we do mat teeknow anything about these
microscopic details to correctly calculate the macopic motion of the box. In the next
unit we will discuss systems of particles and idtrce the concept of tleenter of mass
that will justify this claim. Indeed, throughotni$ course we will be concerned only
with macroscopic mechanical energy; this energy can be understood solely in terms of
Newton’s second law.

The underlying physics in this example tbatnot be understood solely in terms
of Newton’s second law is the thermodynamics nee¢deshderstand why, as the box
comes to rest, it actually gets hotter, Nameigtibn converts the macroscopic kinetic
energy of the box into microscopic (thermal) enavfithe molecules in the box and the
floor. Understanding the details of this processedi beyond the scope of this course,
yet we can get a qualitative picture of the mectrannvolved by considering a simple
model in which the atoms that make up the mateaigshought of as little balls
connected by springs. The frictional force themadeled as the interactions of
protrusions as the surfaces move past each otherpibtrusions deform as they make
contact, compressing and stretching some of thaggand causing a force opposing the
relative motion — this is the force we call friagticEventually the protrusions snap back
past each other, causing vibrations of the badls phopagate to neighboring balls via the
springs. These increased vibrations imply an irexea temperature. In other words, the
deformation and release of the points of contath@surfaces move past each other
cause both the frictional force and the heatinthefbox

D) Forces and Potential Energy

It may be useful at this point to summarize whathave learned so far. We can
calculate the work done on an object by a forcie m®ves through some displacement
by integrating the dot product of the force anddisplacement. The total macroscopic
work done on an object by all forces is equal ®dhange in the kinetic energy of the
object.

For conservative forces such as gravity and spyiwg defined a quantity called
the change in the potential energyJj as minus the work done by that conservative
force. The potential energy U for an object addipular location was defined as the
change in potential energy of the object betweearhitrary point that defines the zero
of potential energy and the specified location.



We obtain the potential energy associated withreefby calculating the work done by
that force.

AU conservativer = ~Weonservativer = —J F [tIX
Can we invert this process? That is, can we sfigintthe potential energy of an object at
a particular location and determine the force thaicting on the object at that location?

To answer this question, let’'s consider the omeedlisional case. If we look at
the work done by the force as the object moves fkdox + dx, we see that the potential
energy changes by an amodht = -Fdx. Consequently, we see that the force acting on
the object at a given point is just equal to mithesderivative of the potential energy
function at that same point.
du (x)

dx
The force is a measure of how fast the potentiatggnis changing!

F(x)=-

Of course, this result is not too surprising; & find the potential energy from the
force by evaluating an integral, then it's reasdadbat we can find the force by
performing the inverse operation, namely by takimgderivative of the potential.
Indeed, this result can be generalized to more dm@ndimension with the use of the
gradient operator, but we will only deal with exdegthat are essentially one-
dimensional here. In the next section, we wilifyadirectly that differentiating the
expressions we have derived for the potential gnasgociated with gravity and the
spring force yield the familiar force expressions.

E) Examples: Force from Potential

En er gy (A
We will now consider a simple

example to illustrate our result that the force

acting on an object at a particular location is U(x) == kx?

related to the spatial derivative of the

potential energy of the object at that locatior

Figure 9.4 shows a mass attached to a sprir i

Defining x to be the displacement of the mas

from its equilibrium position, we see that the

potential energy function for the mass is a

simple parabola.

The spatial derivative of the potential
energy of the mass at pomis represented
on the graph as the slope of the tangent to tl
curve at poink. The steeper the slope, the
bigger the magnitude of the force. Taking the S
derivative of the potential function, Figure 9.4 saulibrium

F(X) =- du (x) = —kx Defining the potential energy of a spring to be
dx equal to zero at its equilibrium position resufts i
the potential energy function being a parabola.
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we find that the force is proportional to the desgment from equilibrium, in agreement
with our expression for the force law for springs.

The same result also applies for the
gravitational force as shown in Figure 9.5.
Namely, we know that the potential energy of an
object out in space some distalitom the
center of Earth is inversely proportionalRoThe
slope of the tangent for thisR potential as a
function ofR tells us that the magnitude of the
gravitational force is largest at the surface ef th
Earth and decreases aR44s we move further
away. Since this slope is always positive, the
force will always be negative, indicating that the
direction of the force always points toward the
center of the Earth. This result is just what we
expect for Newton’s universal law of gravitation.

Note that shifting the potential energy
function up or down in either example does
change the force since adding a constant to a
function does not change its slope. This result
affirms our understanding that we are always free
to add a constant to the potential energy function

without changing the underlying physics. Figure 9.5
Differentiating the gravitational
F) Equilibrium potential function recovers the familiar
So far we have used the word inverse square form of the Newton’s

“equilibrium” to mean the position or orientation ynjversal gravitational force.
where the net force on an object is zero. For

conservative forces, we can get an equivalent ¢iomdior equilibrium in terms of the
potential energy. Namely, since we can expressaarvative force in terms of the
spatial derivative of its potential energy functiore see that the locations for
equilibrium will be at points at which the slopetbis potential energy function is zero!

For example, if we refer back to Figure 9.4, we g potential energy function
for a mass on a spring. The slope of the tangetfti$ curve is zero at only one point,
namely, the point at which the potential energglits at its minimum. .

Indeed, the slope of the tangenaty function will be zero aany minima or
maxima of the function. Figure 9.6 shows a rotleaster track. Since the potential
energy due to gravity for an object near the serfafche earth is just equal to the
product of the weight of the object and its heigihbve a position defined to be zero, we
see that the height of the track (measured fronzéhne of potential energy) is directly
proportional the gravitational potential energyaafar at that point. If a car is placed at



rest at the minimaB) or either of the two maxima\j and C), it will remain at rest since
the net horizontal force on the car at each ofehmEsitions is zero. If the car at position
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Figure 9.6

The points of equilibrium on a roller coaster track
determined as the points in which the derivativéhefpotential
energy function is zero.

(B) is given a small push in either direction it witurn to the equilibrium position. If
the car is given a small push in either directibpasitions A) or (C), however, it will
roll down the track, moving farther away from thlguiibrium position. We say that the
equilibrium isstable at the minima and ignstable at the maxima.

To generalize this observation, we can say thatgect which is initially at rest
tends to move toward the configuration where iteptal energy is minimized. Note
that there is no new physics in this statemenis-sfatement in terms of potential energy
is equivalent to the statement that an object acatls in the direction of the net force
acting on it.



Main Points

* Macroscopic Work Done by Friction

The work done by a kinefic_frictionforce acting on a
deformuable object cannof be caleulufedwithout an
understanding of the nature of the interactions af
fhe surfices.

However, the work-kinetic energy theorem can WMC_IC{“GSCOPEC . Ij- %
stilthe applied if we consider all forces fo act af the Jriction £
cenler of muss of the object. The integral of the
JHiction force through the full displacement of the
object iy called the macroscopic weork done by
JFiction. This macroscoic work does determine fhe
change in the mechanical energy of the object.

MACTOSCapis

friction =AE
if friction is only non-
conservalive force acting

* Force from Potential Energy

(1-D) (3-D)
For conservative forces, the force acling
onany object af any point is egual fo minus F(x) Zerin dU(I) Fv i _v'g‘.-U
the spatial derivative of the potential dx

ecnergy finction of fthe object af that pofnt

Equilibrium postions for aparticle acted on
by conservative forcesare those locations
whiiere the slope of ke potential energy

Junction is zero e — Equilibria —
a du

— =1
: dx




