10. center of Mass

A) Overview

This unit expands our study of mechanics fromlsiparticles to systems of
particles. We will introduce the very importanncept of the center of mass of a system
of particles and determine the center of massdtin discrete and continuous mass
distributions. We will use Newton'’s second lawotatain the equations of motion for the
center of mass of a system of particles. We wilbalbtain a version of the work-kinetic
energy theorem, called tlsenter of mass equation, that can be applied to a system of
particles,

B) Systems of Particles and the Center of Mass

So far we have only considered the motion of sengtijects. We have
intentionally not considered the motion of, for exde, an object composed of two
different sized balls connected to the ends ofda o the next few units we will develop
the tools to understand the motion of more comptgystems of objects such as these.
We will discover that their behavior can be undsodtby applying what we already
know, and we will see that the equations describegr motion are remarkably similar
to those we have already developed.

We will start by introducing a new concept whichl wlay a key role in what
follows, namely that of theenter of mass. Quite simply put, theenter of mass of an
object is just the average location of the massitiakes up the object. For a simple
symmetric object like a ball or box of uniform dapsve will see that the center of mass
is just at the center of the object. For less singblapes we will have to perform a
calculation to determine the location of the cenfenass.

The procedure we will adopt for finding the avergqgsition of the all of the mass
contained in some system of objects will be to $yntgke a mass-weighted average of
the positions of the individual parts. Namely, wi# define the location of the center of
mass of a system of particles to be equal to theduthe positions of the individual
particles with each one weighted by its own fracd the total mass of the system as
shown for a system of discrete masses in Figurk 10.

In the next section we will determine the cenfemass for a two particle system.
This concrete example will illustrate the generalgedure and hopefully make clear why
this definition makes sense.
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Figure 10.1
The definition of the center of mass for a systdrihee discrete masses.

C) Center of Mass for a Two-Body System

We’'ll start by considering an object made of oy point particles, labeled 1
and 2. We will assume that we know the masseseotitb particles as well as their
locations along th& axis as shown in Figure 10.2.
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Figure 10.2
Two masses located along the x-axis.

Since the particles lie along thexis, the calculation of the position of their

center of mass is straightforward.
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If the masses are equal, we see that the centeass is located at the average value, of
andx,. This position is halfway between them, whichi@iaty makes sense. If, on the
other hand, one mass is twice as big as the atheitl count for twice as much in the
average, which means the center of mass will beecltw the heavier particle than the
lighter one, which also seems reasonable.

So far we have considered just the one-dimensitas# in which both particles
lie along thex axis. This procedure can be easily extended te itih@n one dimension,
though, using vector addition. We start by writthg expression for the location of the
center of mass in terms of the masses of the twiac|es and the vectors that locate each
of the two particles.
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We can rewrite this formula so that the vector locating the center of mepsalsto the
sum of two vectors, the displacement vector of one particle and another katier t
proportional to the difference in the displacement vectors of the two particles.
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We can think of this equation as a map that tells us how to get to the center of mass: We

first go to one of the objects and then we go a fraction of the way to the other object,
where this fraction is determined by the masses, as shown in Figure 10.3etfdhd s

Vi

| |
1 | »
X

Figure 10.3 X1 2
The location of the center of mass of a two bodtesw is located along the
vector differencerg —r;) of the two displacements..

object has the same mass as the first, we go half way. If the second objautds thean
the first, we go more than half way, and if the second is lighter than the figgi lges
than halfway.

The beauty of this approach is that we can see that the location of the center of
massdoes not depend on our choice of the origin or the orientation of our coordinate
system; the center of mass always lies at the same fixed point aloigetberinecting
the two objects. We have just demonstrated an important result, namely, thatéhefcent
mass is a property of the system itself; it does not depend on the way we choose to look
at the system. Indeed, we will show in a later unit that the center efahagigid
system is the same as its balance point!

D) Center of Mass for Systems of More than Two Particles
We can extend our definition of the center of mass for systems containing more

than two particles by simply summing up the mass-weighted displacemensvector
each particle.
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It is usually easier to break this vector equaiiio components and evaluate each
component separately. Just to make sure we knowttiswvorks, let's do an example
involving eight equal mass patrticles located ondtmers of a cube, as shown in Figure
10.4.




To find thex-coordinate of the center of
mass we need to sum tkeoordinates of each o
the eight particles weighted by the ratio of the
mass of each particle to the total mass of the
system. In this example the particles all have t
same mass and thescoordinates are either zerc
orL, so that the sum is easy to evaluate, and w
find that thex-coordinate of the center of mass i
just equal to %..
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We will get the same results for both thandz .
coordinates, so that we see that the center of Figure 10.4 .
mass is at the center of the box, as expected. A system of eight equal mass
particles located at the corners of

Now suppose the cube was a solid, made® cube of sidé.
up of millions of atoms rather than just eight
particles on the corners. We suspect the answeldvib@uthe same, that the center of
mass is still in the middle, but how can we prdve tonjecture when actually
performing the sum over millions of atoms seemgatilt, if not impossible? Once
again calculus comes to the rescuel!
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Rather than calculating the product of positiod arass for individual particles,
we just integrate the position vector over allnitésimal mass elemerds contained in
the cube. We will do this calculation in the nes¢tson.

E) Center of Mass for Continuous Mass Distribution

Before we actually evaluate any integral, let'kenaure we understand exactly
how we adjust our definition of the center of mas®en we are dealing with a continuous
mass distribution. The big idea is that we haveeplace a discrete sum by a continuous
sum, an integral. In the discrete sum we evaluttegbroduct of the mass of each part of
the system and its position and then added therimupe continuous sum we are doing
the same thing, the only difference now is thatdivaling a continuous object up into an
infinite number of tiny volume elements each hawangassim.
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Since here we are integrating over the volumeaflee, a 3 dimensional object, the
integral itself must be evaluated in all three disiens x, y andz. To evaluate the mass
element dm, we take the product of the volume efdlement and the mass density (the
mass per unit volumg) of the cube.

dm = odV = pdxdydz
Our job now is to evaluate this triple integralh€eTfirst step is to break our equation for
the center of mass vectBg, into x, y andz components. We will start with the
equation and first determine the limits of integmat In each direction, the cube is




located between the origin and a distabhdeom the origin. If we assume the mass
densitypis a constant, then it can be taken outside ointiegral.
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The resulting three-dimensional integral is eqaaht product of three one-dimensional
integrals, each of which is evaluated separatddequiring the product of the mass
density and the volume of the cube to be equdlgddtal mass of the cube, we obtain the
expected result, that the c-coordinate of the casftmass of the cube is just equal ta.%
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The y and z component calculations are absoludegtical to the x-component
calculation, giving us the expected result, thatdbnter of mass of the box is at its
center!

F) Center of Mass of a System of Objects
We now know how to find the center
of mass of a collection of point particles as
well as that of a continuous solid object
What happens when we want to find the
center of mass of a collection of solid
objects? Figure 10.5 shows two objects,
labeleda andb. By definition, the center of
mass of the system is found by integrating
the position vector over all of the mass in ti
system. Since the system is made of two
objects, the total integral is just the sum of
two separate integrals, one for each object
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If we multiply and divide each of these
integrals by the mass of the object, we . .
certainly haven't changed anything, but we can be galculated S|_mply by treatln_g
can now see that the numerator just become§2Ch Object as a point particle having a
the mass of each object times the position ofMass equal to the total mass of the object
its center of mass.
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Therefore, we have just arrived at a simple prooeélr finding the center of mass of a
system of solid objects. Namely, we just treabealgject as a point particle with all of
its mass located at its center of mass! That'thalle is to it!
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Figure 10.5 J
The center of mass of the two objects




G) Dynamics of the Center of Mass

To this point we have defined the concept of #eter of mass and have shown
how to find it for any system of objects. With tlkisowledge in hand, we can finally do
some physics.

We will start with our definition for the centef mass of a system of objects and

take the derivative of this expression with respedime.
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The left hand side of the equation becomes thecitglof the center of mass, and the
numerator on the right hand side becomes the suheaohass times velocity for each
object in the system. We have already defined thdyzt of the mass and velocity of an
object as its momentum. Therefore, the numeratdhe right hand side is just equal to
the total momentum of the system.
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We will now take another derivative with respextitne. The left hand side of the
equation becomes the acceleration of the centerask, and the numerator on the right
hand side becomes the sum of the mass times aatietefor each object in the system.
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The product of the mass and acceleration of arcolggust equal to the total force on
that object.
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Now this sum of the total forces acting on all thgeots in the system could get
unwieldy if the number of objects gets large. Téally good news, though, is that we
can simplify this sum significantly by realizingathany forces that act between two
objects that are both in the system wihcel in this sum Newton’s third law requires
that all such forces always come in pairs of equagmitude and opposite direction!

2 Fret)i =X Fexternal,i + 2 Fij = 2 Fexternal i
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Hence the sum of all forces acting on all objecthesystem just reduces to the sum of
all forces acting on the system from the outsidehe total external force.
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We have finally arrived at something that looksatlyalike Newton’s second law, but
rather than applying just to point particles abefthis expression relates the total
external force on the whole system to the acceteratf the center of mass of the
system! Consequently, we can say that no matterdoonplicated a system of objects
may be, the center of mass of the system behawbs same simple way that a point
particle does.




Indeed, in the next section, we will use this equetoobtain a generalization of the
work-kinetic energy theorem for systems of particles

H) Center of Mass Equation

In sectionE of unit 7, we integrated Newton’s second law to obti@work-
kinetic energy theorem for point particles: namégat the change in kinetic energy of a
particle is equal to the work done on that partimlehe net force.

AK =Wt

We will now extend this result to systems of pagtcl We start from our result
from the last section: that the acceleration ofcieter of mass of a system of particles is
equal to the total external force acting on a systé particles divided by the total mass
of the system.
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This equation looks exactly like Newton’s second lawe point particle that has the
total mass of the systerVl{;a) and is located at the center of mass of the syste
Consequently, we can perform exactly the same a@oiv we made in unit 7 to obtain
the work-kinetic energy theorem for a point particléne result here is an equation, often

called the center of mass equation, that lookstixke the work-kinetic energy
theorem we derived for point particles.
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The only differences lie in the subscripts. Theglescriptsare important, however. The
change in kinetic energy term is calculated akafdystem were a particle of médsgy
and were moving with the velocity of the center obsaWe define the right hand side
of the equation as tlenacroscopic work done by the net forceThis macroscopic
work is calculated as if all forces were acting lois particle located at the center of
mass.

We can now see why we did not need to worry aboutntheoscopic work done
by kinetic friction when we were calculating the matf the box skidding to a stop in
the last unit. If we consider the box to be aeysof particles, we see that the change in
kinetic energy of the box is exactly equal to thecnoescopic work done by the net force,
the kinetic friction force. The microscopic workraoby the kinetic friction force at the
interface of the surfaces of the box and the fieiermines the additional thermal energy
in the box and the floor, but doest determine the motion of tleenter of mass of the
box.

I) Example: the Astronaut and the Wrench

We will end with a simple example to illustrate soofiche concepts we have
developed in this unit. Imagine you are an astrofeawut in space. You have just
finished fixing a space telescope using a big wremcbse mass is one tenth as big as
yours. You realize you have no way to get back ta gpaceship which is 20 meters
away from you, so you throw the wrench as hard asgoun a direction away from the



spaceship which causes you to move in the oppaséetion, toward the spaceship.
When you finally reach the space ship, how far awayau from the wrench?

The key concept needed to answer this questidraidiie acceleration of the
center of mass of a system will beroif the external force on the system is zero.hlg t
case, we define the system to be you and the wranchthe center of mass of the system
is initially at rest a distance of 20 meters froaulyspaceship. Since there are no external
forces acting on the system and the center of imsasgially at rest, the location of the
center of mass of the system can never change! thwese the initial location of the
center of mass to beat 0, the center of mass will always bexat 0.

The location of the center of mass of the syswdeiermined from its definition.

_ M astronaut Xastronaut + M wrenchXwrench _ 0

Xcem
M astronaut M wrench

Multiplying both sides by the total mass, we obtaim result that the product of the
position and mass of the wrench is always equalitusithe product of your position
and mass.

M wrenchXwrench = ~M astronaut Xastronaut
Since the mass of the wrench is 1/10 of your masswtench will always be ten times as
far away from the center of mass as you are, andlialways be on the opposite side of
the center of mass from you.

« __ Magtronaut «
wrench — —M astronaut
wrench

When you are at the spaceship, 20 meters to thefldie center of mass, the wrench will
be 200 meters to the right of the center of mabs;iwis 220 meters from the spaceship



Main Points
¢ Definition of Center of Mass

[Discrete Particles) (Continuous Mass Distribution)
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The center of mass of a system of
objects is deffuned fo be fhe mass-
welghied average of {fy components.

+ Equation of Motion for Center of Mass

Applying Newifon’s second laow fo a system =

of particles, we obiain the equation of F et External = M totatdcm
molion for the cenfer of mass.

* The Center of Mass Equation

Integrafing the equationof motion for the
cenler of muass, we oblginthe “cenier of
mss equation™ tat relales the change in
the kinetic ene{g}r of the center quassl A[l MVE ] - IF : di
{calculated as if the system were « parficle ’ (6 Net,External  “*CM
fraving the total mass of the system amnd
moving with fhe velocily of the cenler of
muass) fp the “macroscopic work”™ done by
fthe fotal external force (caiculated as if all
Jorees were acting af the center of niass).



