11. conservation of Momentum

A) Overview

This unit introduces the important concept of¢baservation of momentum
Namely, the total momentum of a system of partielésbe conserved whenever the
sum of the external forces acting on the systereiis. We will apply this conservation
law to collisions of particles and investigate s@s of energy loss in these collisions.
We will also introduce a special reference frangspaiated with a system of particles,
called the center of mass frame, in which the totamentum of all the particles in the
system is zero. The description of collisionsftesimple in this frame.

B) Momentum Conservation
In the last unit we introduced the concept ofdbeter of mass of a system of
particles as the mass-weighted average of theitipas. Taking the derivative of this
expression with respect to time, the left hand sidéhe equation becomes the velocity of
the center of mass, and the numerator on the niggnd side becomes the sum of the mass
times velocity for each object in the system.
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We have already defined the product of the massvaluttity of an object as its
momentum. Therefore, the numerator on the rightltsade is just equal to the total
momentum of the system. Multiplying both sideshef equation by the total mass of the
system, we obtain the result that the total monmmardtithe system is equal to the product
of the total mass and the velocity of the centenass.

Potal = MtotalVem
Differentiating once more with respect to time, see that the time rate of change of the
total momentum of the system is equal to the prbdiithe total mass of the system and
the acceleration of the center of mass.
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Now we showed in the last unit that the produdheftotal mass and the acceleration of
the center of mass is just equal to the total ext€orce applied to the system.
Therefore, we see that the time rate of changbeotdtal momentum of the system is just
equal to the total external force applied to thetey.
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This deceptively simple looking equation is extrgmeportant and we will spend
several units exploring its meanirige is the total momentum vector of the system and
is equal to therector sunof the momenta of all of the parts of the systkeikewise, the
total external force is theector sunof all external forces acting on all parts of the
system.



Note that when there are no external forces adimthe system, the time rate of
change of the total momentum is zero. In otherdwoif the total external force is zero,
then the total momentum of the system does notgghantime. In this case, we say that
themomentum of the systesrconserved We will now work out a couple of simple
examples that illustrate momentum conservation.

C) Momentum Example: Astronaut and Wrench

We’'ll start by revisiting the problem we endediwim the last unit — that of an
astronaut throwing a wrench. Since the astronaditla®wrench are both initially at rest,
the initial momentum of the system is zero, andesithere are no external forces acting
on the system of the astronaut and the wrenchiptabmomentum of the system is
conserved and will therefoedwaysbezera The total momentum of the system has two
contributions — one from the astronaut and one fitoenwrench — and the vector sum of
these is zero.

We see that in order for the total momentum tadrye, the astronaut must move
in the opposite direction of the wrench with a spéeed by the ratio of the masses.
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For example, if the mass of the astronaut is teedias big as the mass of the wrench,
the speed of the wrench will be ten times the spdédide astronaut. This requirement
ensures both that the magnitudes of the momentuheofrench and the astronaut are
the same, and also that the center of mass ofyters does not move since the distance
the wrench moves in any given time interval willtba times that moved by the
astronaut.

Let’'s now examine our momentum equation a bit noarefully. Suppose the
total external force is zero in some direction it in others — what can we say about the
momentum of the system?
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Since our equation is a vector equation, we knat ttihe only component of momentum
which will be conserved will be the one that liésng the direction in which the total
external force is zero.

D) Example: Inelastic Collision

We will now move on to consider an interestingsslaf problems that can be
addressed using this conservation of momentumipteacNamely, we will look at
collisions between particles. We’'ll start with tweample shown in Figure 11.1. A box
of massmy slides with velocity; along a horizontal frictionless floor and collidegh a
second box of mass, which is initially at rest. After the collisiomé boxes stick
together and move with a final velocity Our job is to determine this final velocity.
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Figure 11.1

An inelastic collision: Box 1 moves with spegdand collides with Box 2 that is initially at resthe two
boxes stick together and move off with spgedThe momentum of the system of two boxes is cwese
in this collision which allows us to determine fireal speed;.

In this problem the system we are interested masle up of the two boxes. Since
the floor is horizontal and frictionless, the taéaternal force on the system in the
horizontal direction izera Therefore the total momentum of the two boxaysis
conserved. That is, this total momentum will be $hme before and after the collision.

Pnitial = Pfinal

At this point you might be wondering about thecks that will act between the
boxes during the actual collision itself — won’esie forces, which will definitely have
components in the horizontal direction, changentibenentum of the system? The answer
is no — they will not — and the reason is simplee Torces between the boxes are not
external forces; these forces are internal forgesg exerted by the boxes, the objects
that make up the system. In other words, the foyckox 1 on box 2 will definitely
change the momentum of box 2 and the force by box Box 1 will definitely change
the momentum of box 1, but the total momentum eftito boxes will not change since
these forces are equal and opposite by Newtom& lHw! For this reason we never
actually have to worry about what happens durirgiistant when the boxes collide —
we can just focus on the total momentum beforeadisat

In this example the initial momentum of the systarthe horizontal direction is
due entirely to box 1. The final momentum of tlystem is due tboth boxes. Since the
initial and final momentum of the system has tdhmesame, we can solve for the final
velocity of boxes 1 and 2 in terms of the initialacity of box 1.
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E) Energy in Collisions

We see that momentum is conserved in this cofljdioit what happens to the
total kinetic energy of the system? s it consdraiso? The answer to this question
depends on what we call the kinetic energy of fts¢esn. Certainly, if there are no
external forces acting on the system, then theme imacroscopic work done on the
system and the kinetic energy of the system, defase’z the total mass times the square
of the velocity of the center of mass cannot chasitieer. However, this kinetic energy
of the center of mass ot equal to the sum of the kinetic energies of theab making



up the system. We will demonstrate this claim @@wve explicitly calculate the sum of
the kinetic energies of boxes 1 and 2 before atedt #fe collision.

Before the collision the sum of the kinetic eneofyhe boxes is just equal to the
initial kinetic energy of box 1.

Kinitial =%le12
After the collision the sum of the kinetic energ#ghe boxes is equal to the final kinetic
energy of the object composed of the two boxekstgether.
K final =3 (my +my Vi
In the last section, we used the conservation aheraum to determine the final velocity
of the boxes in terms of the initial velocity ofXbb. Therefore, we can determine the
final kinetic energy in terms of the initial kinetenergy.
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We see here that the final energy is smaller thanitial kinetic energy by exactly the
same factor that related the final and initial edies. In other words, the kinetic energy
of the system, defined as the sum of the kineter@gas of the boxes, wa®st conserved

in the collision. We call this kind of a collisidmelastic”. In the next section, we will
take a look at how this energy is lost.

F) Energy Loss in Collisions

We saw in the last section that the kinetic en@fgfhe boxes after the collision
was less than the kinetic energy of the boxes bdfa collision. How can we
understand this loss of energy? Where did the grgpo@

To understand this loss of energy, we need to &idke collision in more detail.
Let’s first focus our attention on box 1. We cafide box 1 to be our system and apply
the center of mass equation to determine thathbage in the kinetic energy of the box
is equal to the macroscopic work done on the bainduhe collision.

AKl = _[ |521 mflw

What force is responsible for this work? Cleatthe force that box 2 exerts on box 1
during the collision must be responsible for thkv This work is done during the time
of the collision and it may be hard to visualizecs the idealized diagram we have drawn
seems to suggest that the boxes themselves aceusbed or deformed during the
collision.

To get a better feeling for what is going on, jeshsider what happens to two
cars after a collision. The obvious deformatibthe cars as a result of the collision
shows where the energy was lost during the cofiisidnis energy loss can be understood
in terms of the work done during this collisiontine force that one car exerts on the
other times the distance that the front of the iotlae was deformed.



Returning to our example of the sliding boxes,car see that if we actually
wanted the boxes to stick together we would haygagide some mechanism for non-
conservative work to be done during the collisiéterhaps we could put a bit of putty on
the surface of one of the boxes that could be cessad during the collision. The details
of the nature of the internal forces acting dutimg collision can influence the amount of
energy lost in a collision, but as long as theeerar external forces acting, then we can
be sure that the total momentum of the systembailtonserved!

G) Center of Mass Reference Frame

We will now return to the concept of the centenss since we will find that it
can play a useful role in collisions as well. Wedalready derived the important
relationship between the total momentum of a systedhthe velocity of its center of
mass.

Potal = MiotalVem
If we know that the total momentum does not chandane, for example, then it must
be true that the velocity of the center of mass dtses not change in time!

Recall the example of the astronaut throwing theneh. We determined that the
velocity of the center of mass of the system (astub + wrench) was constant and, in
fact, equal to zero. The total momentum of théesyswvas zero implying that the
momentum of the wrench was exactly equal and opptsithe momentum of the
astronaut. The reference frame in which we preskthtis example is called tieenter of
mass reference framsince the velocity of the center of mass is zefbis frame.

What about the more general case when the ceinteass is moving with some
constant velocity? We already know how to compagasurements in different reference
frames. We learned in unit 3 that if the veloafyan object is known in reference frame
A, and reference frame A is moving relative to refiee frame B with a constant
velocity, then the velocity of the object in redace frame B, is just equal to the vector
sum of these velocities.

Vo,B =Vo,A*VaB
Therefore, once we determine the velocity of th&ereof mass in the given frame, we
can always transform the problem to the centeradsiirame, if doing so makes the
problem easier to solve. We will do such an exanpkhe next section.

H) Example: Center of Mass Reference Frame

Suppose an asteroid is moving with a constantitglof 4 km/s in the *
direction as observed by a spaceship. An explasevece inside the asteroid suddenly
blows it into two chunks, one having twice the mafsthe other as shown in Figure 11.2.
In the reference frame of the asteroid the lighkemk moves in theytdirection with a
speed of 6 km/s. What is the speed of the healmgnlcof the asteroid as measured by
someone on the spaceship?

The total momentum slways zeran the center of mass reference frame. Now
the center of mass frame for the two chunks isrisi¢he frame in which the asteroid was



at rest before it exploded. Sinc{
the total momentum is zero in
this frame, the momentum of th
two chunks after the explosion
must be equal and opposite. If
the lighter chunk has a velocity
of 6 km/s upward then the
bigger chunk must be moving
downward and must have half Vot
the speed of the lighter chunk '
since it has twice the mass.
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The velocity of any
object in the reference frame of
the spaceship is equal to the
velocity of that object in the
center of mass reference frame Figure 11.2

plus the velocity of the center of an ateroid moving in the x-direection suddenly
mass in the reference frame of explodes into two pieces. Conservation of

t?e ship. . . momentum is most conveniently applied in the
Vo,ship = Vo,cM *VeM, ship asteroid center of mass to determine the speed of
For the big chuck of asteroid,  the heavier chunk in the spacship frame.

the velocity relative to the center

of mass is 3 km/s in they direction and the velocity of the center of masative to the
ship is 4 km/s in thexdirection. We can add these vectors using thedggitean

theorem to find that the speed of the big chink ksn/s in the spaceship frame as shown
in Figure 11.3.

Figure 11.3
To find the velocity of the chunk with respect bhe tspaceship, we take
the vector sum of the velocity of the chunk witkgect to the asteroid
CM and the veloicty of the asteroid CM with respiecthe spaceship.



Main Points

* Conservation of Momentum 50
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T:sm = e Beternat
If the sum of the external forces @
acting on any systen of partcles is :
zero, then the total momentium of the When F_.\-'&.-.E\-.-fma! =0
system, defined as the vector sum qof
the momenin of the individial : ;
Total = Zpi = o
T

particles, is conserved.

» Forces in a Collision
Internal Forces - Determine the amount of Energy
loss during the collision

Internal forces defermine the amount of
energy lost in « collision.

If only infernal forces act during a
collision, the folal momentium of the system
will be conserved

¢ Center of Mass Reference Frame

The Cenier of Mass Reference Frame is defined

fo be that frame in which the fotal momentfum of

all particles in the sysiem is fero. In otlier words,

it is the frame fn widch the cenier of niass of the

system is af rest. Center of Mass Reference Frame
i - Pl

Conservafion of momentium calculafions are Pr‘” el T ot Total I o 0

oflen simpliffed in the cenier of muass frame.



