
11.  Conservation of Momentum  
 
A) Overview 
 This unit introduces the important concept of the conservation of momentum.  
Namely, the total momentum of a system of particles will be conserved whenever the 
sum of the external forces acting on the system is zero.  We will apply this conservation 
law to collisions of particles and investigate sources of energy loss in these collisions.   
We will also introduce a special reference frame, associated with a system of particles, 
called the center of mass frame, in which the total momentum of all the particles in the 
system is zero.  The description of collisions is often simple in this frame. 
   
B) Momentum Conservation 
 In the last unit we introduced the concept of the center of mass of a system of 
particles as the mass-weighted average of their positions.  Taking the derivative of this 
expression with respect to time, the left hand side of the equation becomes the velocity of 
the center of mass, and the numerator on the right hand side becomes the sum of the mass 
times velocity for each object in the system.   
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We have already defined the product of the mass and velocity of an object as its 
momentum.  Therefore, the numerator on the right hand side is just equal to the total 
momentum of the system.   Multiplying both sides of the equation by the total mass of the 
system, we obtain the result that the total momentum of the system is equal to the product 
of the total mass and the velocity of the center of mass.  
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Differentiating once more with respect to time, we see that the time rate of change of the 
total momentum of the system is equal to the product of the total mass of the system and 
the acceleration of the center of mass.   
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Now we showed in the last unit that the product of the total mass and the acceleration of 
the center of mass is just equal to the total external force applied to the system.  
Therefore, we see that the time rate of change of the total momentum of the system is just 
equal to the total external force applied to the system. 
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This deceptively simple looking equation is extremely important and we will spend 
several units exploring its meaning. Ptotal is the total momentum vector of the system and 
is equal to the vector sum of the momenta of all of the parts of the system. Likewise, the 
total external force is the vector sum of all external forces acting on all parts of the 
system.  
 



 Note that when there are no external forces acting on the system, the time rate of 
change of the total momentum is zero.  In other words, if the total external force is zero, 
then the total momentum of the system does not change in time.  In this case, we say that 
the momentum of the system is conserved.  We will now work out a couple of simple 
examples that illustrate momentum conservation. 
 
C) Momentum Example: Astronaut and Wrench 
 We’ll start by revisiting the problem we ended with in the last unit – that of an 
astronaut throwing a wrench. Since the astronaut and the wrench are both initially at rest, 
the initial momentum of the system is zero, and since there are no external forces acting 
on the system of the astronaut and the wrench, the total momentum of the system is 
conserved and will therefore always be zero.  The total momentum of the system has two 
contributions – one from the astronaut and one from the wrench – and the vector sum of 
these is zero.  
 
 We see that in order for the total momentum to be zero, the astronaut must move 
in the opposite direction of the wrench with a speed fixed by the ratio of the masses.  
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For example, if the mass of the astronaut is ten times as big as the mass of the wrench, 
the speed of the wrench will be ten times the speed of the astronaut. This requirement 
ensures both that the magnitudes of the momentum of the wrench and the astronaut are 
the same, and also that the center of mass of the system does not move since the distance 
the wrench moves in any given time interval will be ten times that moved by the 
astronaut. 
 
 Let’s now examine our momentum equation a bit more carefully.   Suppose the 
total external force is zero in some direction but not in others – what can we say about the 
momentum of the system?   
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Since our equation is a vector equation, we know that the only component of momentum 
which will be conserved will be the one that lies along the direction in which the total 
external force is zero. 
 
D) Example: Inelastic Collision 
 We will now move on to consider an interesting class of problems that can be 
addressed using this conservation of momentum principle.  Namely, we will look at 
collisions between particles.  We’ll start with the example shown in Figure 11.1.  A box 
of mass  m1 slides with velocity v1 along a horizontal frictionless floor and collides with  a 
second box of mass m2 which is initially at rest.  After the collision the boxes stick 
together and move with a final velocity vf. Our job is to determine this final velocity. 
 



 In this problem the system we are interested in is made up of the two boxes. Since 
the floor is horizontal and frictionless, the total external force on the system in the 
horizontal direction is zero.  Therefore the total momentum of the two box system is 
conserved.  That is, this total momentum will be the same before and after the collision.  
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 At this point you might be wondering about the forces that will act between the 
boxes during the actual collision itself – won’t these forces, which will definitely have 
components in the horizontal direction, change the momentum of the system? The answer 
is no – they will not – and the reason is simple: The forces between the boxes are not 
external forces; these forces are internal forces, being exerted by the boxes, the objects 
that make up the system.  In other words, the force by box 1 on box 2 will definitely 
change the momentum of box 2 and the force by box 2 on box 1 will definitely change 
the momentum of box 1, but the total momentum of the two boxes will not change since 
these forces are equal and opposite by Newton's third law!  For this reason we never 
actually have to worry about what happens during the instant when the boxes collide – 
we can just focus on the total momentum before and after  
 
 In this example the initial momentum of the system in the horizontal direction is 
due entirely to box 1.  The final momentum of the system is due to both boxes. Since the 
initial and final momentum of the system has to be the same, we can solve for the final 
velocity of boxes 1 and 2 in terms of the initial velocity of box 1.  
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E) Energy in Collisions 
 We see that momentum is conserved in this collision, but what happens to the 
total kinetic energy of the system?  Is it conserved also?  The answer to this question 
depends on what we call the kinetic energy of the system. Certainly, if there are no 
external forces acting on the system, then there is no macroscopic work done on the 
system and the kinetic energy of the system, defined as ½ the total mass times the square 
of the velocity of the center of mass cannot change either.  However, this kinetic energy 
of the center of mass is not equal to the sum of the kinetic energies of the objects making 

Figure 11.1
An inelastic collision:  Box 1 moves with speed v1 and collides with Box 2 that is initially at rest.  The two 
boxes stick together and move off with speed vf.  The momentum of the system of two boxes is conserved 
in this collision which allows us to determine the final speed vf.



up the system.  We will demonstrate this claim now as we explicitly calculate the sum of 
the kinetic energies of boxes 1 and 2 before and after the collision. 
 
 Before the collision the sum of the kinetic energy of the boxes is just equal to the 
initial kinetic energy of box 1.    
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After the collision the sum of the kinetic energies of the boxes is equal to the final kinetic 
energy of the object composed of the two boxes stuck together.   
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In the last section, we used the conservation of momentum to determine the final velocity 
of the boxes in terms of the initial velocity of box 1.  Therefore, we can determine the 
final kinetic energy in terms of the initial kinetic energy. 
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We see here that the final energy is smaller than the initial kinetic energy by exactly the 
same factor that related the final and initial velocities. In other words, the kinetic energy 
of the system, defined as the sum of the kinetic energies of the boxes, was not conserved 
in the collision. We call this kind of a collision “inelastic”.  In the next section, we will 
take a look at how this energy is lost. 
 
F) Energy Loss in Collisions 
 We saw in the last section that the kinetic energy of the boxes after the collision 
was less than the kinetic energy of the boxes before the collision.  How can we 
understand this loss of energy? Where did the energy go?  
 
 To understand this loss of energy, we need to look at the collision in more detail.  
Let’s first focus our attention on box 1.  We can define box 1 to be our system and apply 
the center of mass equation to determine that the change in the kinetic energy of the box 
is equal to the macroscopic work done on the box during the collision.    
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What force is responsible for this work?  Clearly, the force that box 2 exerts on box 1 
during the collision must be responsible for this work.   This work is done during the time 
of the collision and it may be hard to visualize since the idealized diagram we have drawn 
seems to suggest that the boxes themselves are not crushed or deformed during the 
collision.  
 
 To get a better feeling for what is going on, just consider what happens to two 
cars after a collision.   The obvious deformation of the cars as a result of the collision 
shows where the energy was lost during the collision. This energy loss can be understood 
in terms of the work done during this collision by the force that one car exerts on the 
other times the distance that the front of the other car was deformed.  
 



 Returning to our example of the sliding boxes, we can see that if we actually 
wanted the boxes to stick together we would have to provide some mechanism for non-
conservative work to be done during the collision.  Perhaps we could put a bit of putty on 
the surface of one of the boxes that could be compressed during the collision.  The details 
of the nature of the internal forces acting during the collision can influence the amount of 
energy lost in a collision, but as long as there are no external forces acting, then we can 
be sure that the total momentum of the system will be conserved! 
 
G) Center of Mass Reference Frame 
 We will now return to the concept of the center of mass since we will find that it 
can play a useful role in collisions as well. We have already derived the important 
relationship between the total momentum of a system and the velocity of its center of 
mass.  
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If we know that the total momentum does not change in time, for example, then it must 
be true that the velocity of the center of mass also does not change in time! 
 
 Recall the example of the astronaut throwing the wrench.  We determined that the 
velocity of the center of mass of the system (astronaut + wrench) was constant and, in 
fact, equal to zero.  The total momentum of the system was zero implying that the 
momentum of the wrench was exactly equal and opposite to the momentum of the 
astronaut.  The reference frame in which we presented this example is called the center of 
mass reference frame, since the velocity of the center of mass is zero in this frame. 
 
 What about the more general case when the center of mass is moving with some 
constant velocity? We already know how to compare measurements in different reference 
frames.  We learned in unit 3 that if the velocity of an object is known in reference frame 
A, and reference frame A is moving relative to reference frame B with a constant 
velocity,  then the velocity of the object in reference frame B, is just equal to the vector 
sum of these velocities.   
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Therefore, once we determine the velocity of the center of mass in the given frame, we 
can always transform the problem to the center of mass frame, if doing so makes the 
problem easier to solve.  We will do such an example in the next section. 
 
H) Example: Center of Mass Reference Frame 
 Suppose an asteroid is moving with a constant velocity of 4 km/s in the +x 
direction as observed by a spaceship. An explosive device inside the asteroid suddenly 
blows it into two chunks, one having twice the mass of the other as shown in Figure 11.2. 
In the reference frame of the asteroid the lighter chunk moves in the +y direction with a 
speed of 6 km/s. What is the speed of the heavier chunk of the asteroid as measured by 
someone on the spaceship? 
 
 The total momentum is always zero in the center of mass reference frame.  Now 
the center of mass frame for the two chunks is clearly the frame in which the asteroid was 



at rest before it exploded.  Since 
the total momentum is zero in 
this frame, the momentum of the 
two chunks after the explosion 
must be equal and opposite.   If 
the lighter chunk has a velocity 
of 6 km/s upward then the 
bigger chunk must be moving 
downward and must have half 
the speed of the lighter chunk 
since it has twice the mass.  
 
 The velocity of any 
object in the reference frame of 
the spaceship is equal to the 
velocity of that object in the 
center of mass reference frame 
plus the velocity of the center of 
mass in the reference frame of 
the ship.   
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For the big chuck of asteroid, 
the velocity relative to the center 
of mass is 3 km/s in the –y direction and the velocity of the center of mass relative to the 
ship is 4 km/s in the +x direction. We can add these vectors using the Pythagorean 
theorem to find that the speed of the big chink is 5 km/s in the spaceship frame as shown 
in Figure 11.3. 

 

Figure 11.2
An asteroid moving in the x-direection suddenly 
explodes into two pieces.  Conservation of 
momentum is most conveniently applied in the 
asteroid center of mass to determine the speed of 
the heavier chunk in the spacship frame.

Figure 11.3
To find the velocity of the chunk with respect to the spaceship, we take 
the vector sum of the velocity of the chunk with respect to the asteroid 
CM and the veloicty of the asteroid CM with respect to the spaceship.



 
 
 
 
 

 


