12. Elastic Collisions

A) Overview

In this unit, our focus will be on elastic colbsis, namely those collisions in
which the only forces that act during the collisame conservative forces. In these
collisions, the sum of the kinetic energies of dthgects is conserved. We will find that
the description of these collisions is significgrgimplified in the center of mass frame
of the colliding objects. In particular, we wilisgover that, in this frame, the speed of
each object after the collision is the same aspiéed before the collision.

B) Elastic Collisions

In the last unit, we discussed the important t@pi;momentum conservation. In
particular, we found that when the sum of the ewkforces acting on a system of
particles is zero, then the total momentum of tfs#esn, defined as the vector sum of the
individual momenta, will be conserved. We alsced®ined that the kinetic energy of
the system, defined to be the sum of the individuatic energies, is not necessarily
conserved in collisions. Whether or not this egeésgconserved is determined by the
details of the forces that the components of tistesy exert on each other. In the last
unit, our focus was on inelastic collisions, thosé#isions in which the kinetic energy of
the system was not conserved. In particular norsexvative work was done by the
forces that the individual objects exerted on ezbler during the collision.

In this unit, we will look at examples in whichetlonly forces that act during the
collision are conservative forces.
In this case, the total kinetic
energy of the system is
conserved. We call these

_
collisions,elastic collisions. As \/{l}ﬂ} m,
an example, consider the m \AAN J/
collision we discussed in the las '

unit with one modification —
instead of having the boxes sticl

together, we’ll put a spring on : L .
one of the boxes as shown in An elastic collision: Box 1 moves with spegdand

Figure 12.1. The spring will _coIIides with Box 2 that is_ init_ially at rest. /pls".ng_
compress during the collision, IS connected to Box 2 which is compressed durieg th
storing potential energy, and collision and then extends to send the two boxes in
when it relaxes back to its opposite directions. The mechanical energy of the
original length it will turn this ~ two box plus spring system is conserved.

stored potential energy back into

kinetic energy. In this way, no mechanical eneglpst during the collision so that the
final kinetic energy of the system will be the samsats initial kinetic energy.

Figure 12.1



C) One Dimensional Elastic Collisions

We will start with the example from the last senti Knowing that neither the
momentum nor the kinetic energy of the system etiinge during this collision allows
us to write down two independent equations thateehe initial and final velocities of
the boxes. .

My +MpVoj =My ¢ +MHVo ¢
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These two equations contain six variables (théirgind final velocities of box 1, the
initial and final velocities of box 2, and the mes®f the two boxes). Therefore, if we
know any four of these quantities, these two eqguatwill allow us to solve for the other
two. For example, if we know the masses and th&inelocities of both boxes then we
can solve these two equations for the final veiesiof both boxes.

There is a complication, however, that will make &ctual solution of these
equations tedious, at best. For example, if weestlle momentum equation for the
velocity of box 2 after the collision in terms tietvelocity of box 1 after the collision,
and plug the result back into the energy equati@nget a pretty messy quadratic
eqguation that, with some effort, can certainly blved.
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There is, however, a better way. Physics carueesgs from this tedious mathematical
chore! Namely, if we solve this problem in the tegrof mass frame, we can avoid
solving any quadratic equations. We can then deter the final velocities in the initial
frame by simply transforming the velocities in tenter of mass frame back into the
initial frame. We will perform this calculation the next section.

D) The Center of Mass View

Figure 12.2 shows the
collision as viewed in the center of
mass frame. We have labeled the
velocities in this frame with an ‘l
asterisk.

We know the total
momentum is conserved amy
inertial reference frame. What
distinguishes the center of mass
frame, though, and what simplifies

L

the calculation, is the additional

constraint that theotal momentumis

always zero in the center of mass m, b‘l}vfﬂj e
frame. Consequently, the single

momentum conservation equation  Figure 12.2

has become two equations, one for

The elastic collision as viewed in the center of mass frame.



the initial state and one for the final state.
My —Mpvpj =0

—Mmvy § +Myvp ¢ =0
Note that we have chosen to use the speed varigtiiesmagnitude of the velocities) in
these equations. Therefore, we have explicitlgritesl the minus signs to indicate the
direction of the velocities. To see how this ¢omiat simplifies the problem, we will
multiply and divide each term in the energy equabyg the appropriate mass. The result
of this operation is that each term now is propoii to the square of an individual
momentum.
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We can now use the momentum equations to write gidehof the energy equation in
terms of the square of the momentum of just orte@particles.
1 1 * 2 1 1 )
—+———|(myVq;) =| —+— |(myV.
(Zml ZmZJ(ml w (2”‘1 Zmzjm ur)
In fact we see that the magnitude of the momentleach of the objects individually is
now also the same before and after the collisithpagh the direction of each one has
changed. In other words, when the collision is \@dwn this reference frame tgeed of
each object is theame before and after the collision.

* *
Vli = Vlf
* *
V2i =Va

This result is very important; it provides us wétlvery simple strategy to solve any
elastic collision problem. We will work through $uan example in the next section.

E) Center of Mass Example

We will now work out an example that demonstrabesuse of the center of mass
frame in elastic collisions. In the collision stmin Figure 12.1, we will assunme, =
2kg, vi =5 m/s, anan, = 3kg. The boxes collide elastically and both malong the
axis defined by the initial velocity vector (cdlthex-axis). Our job is to determine the
final velocities of both boxes in this referencanfre, which we will call the lab frame.

Our first step is to transform this problem to tdemter of mass system. In order
to make this transformation, we need to know tHeaity of the center of mass in the lab
frame. In unit 10 we determined that this veloeiys just equal to the vector sum of the
individual velocities, weighted by the fractiontbe total mass each particle carries.

v _MmyptmpVp . my o
CM lab = = Vi
my +my my +my
Plugging in the values for the masses and theiniglocities, we find that the
center of mass is moving at 2 m/s in thed#rection.

We can now use this value for the velocity of ¢bater of mass to determine the
initial velocities of the boxes as viewed in thates of mass frame. We know that the



velocity of an object in the center of mass framedual to the velocity of the object in
the lab frame plus the velocity of the lab framéhie center of mass frame.

Vobject = Vobjectlab * Viab,cM
We know the velocity of the lab in the center ofswframe must just be equal to minus
the velocity of the center of mass in the lab frafée can now find the initial velocities
of both boxes in the center of mass frame by simaglying numbers that we now know.
Namely, we find the initial velocity of box 1 indlcenter of mass frame is equal to 5 m/s
-2m/s = 3m/s in the positive x-direction, and thigial velocity of box 2 in the center of
mass frame is equal to 0 m/s -2m/s = 2m/s in tigatnee x-direction. From the last
section we know that the final speeds in the cesfterass frame are equal to initial
speeds in that frame. Therefore, we know the fieldcity of Box 1 is equal to 3 m/s in
the negative x-direction and the final velocity of Box 2 is equal2 m/s in thegoositive x-
direction.

Vif=-3 m/si
Vo =+2 m/si

Our final step is to transform these results ®l#b frame. We can make this
transformation by simply adding the velocity of eabject in the center of mass frame
to the velocity of the center of mass in the lamfe. When we make these additions, we
see that after the collision, box 1 moves with gpkeen/s in the negative x direction and
box 2 moves with speed 4 m/s in the + x directi¥iou can verify, using these values,
that both momentum and energy are indeed consantbd collision!

If we now replace the masses and initial velositrethis problem by variables
and follow the identical procedure, we arrive & ¢feneral expressions for the final
velocities of any two objects undergoing an elastidision under the assumption that the
second object is at rest to begin with and thataliion is in one dimension.
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We can learn a couple of interesting things frbese equations. First, if the
masses are the same we find that final velocitheffirst object is zero and the final
velocity of the second object is just equal toitheal velocity of the first. In other
words, the objects trade roles!

Second, we see that the final velocity of the fitgect changes signiify, is
greater thamy. In other words, if the first object is lighteratinthe second it will bounce
back. If, on the other hand, the first objecteavier than the second, it will continue in
its initial direction with a reduced speed.



F) Elastic Collisionsin Two Dimensions

The last example assumed that the motion of theliog objects was constrained
to one dimension. We found that knowing the maaseésthe initial velocities of both
objects was enough to completely determine the Vielacities. We will now extend this
analysis to two dimensions by considering the swlh of objects on a frictionless
horizontal surface without any constraint thatii@ion is along a single axis. An actual
example of such as situation might be billiard 9ablliding on a pool table or pucks

colliding on an air-hockey table.

We will start by making the simplification thatetimass of both objects is the
same and that one of the objects is initially at.ré=ven in this restricted case, we can
see that the final velocity vectors cannot be deiteed from a knowledge of the initial
velocity vectors. Indeed, the final directions deghen the orientation of the objects
when they collide. If the collision is head-on firal velocities will be along the x-axis
just like in the previous example, but if the cgithn is not head-on, as illustrated in
Figure 12.3, the final velocities can have y-congrda as well

time

Figure 12.3
An elastic collision between two equal mass bdlishe centers of he balls are not aligned, tHésion becomes two-dimensional;

the final velocities can develgpcomponents.

What can we say about the final velocities in ¢hesses? Just as in the previous
example, we get the simplest view of the collidimm the center of mass reference
frame as shown in Figure 12.4. Prior to the doltisve see the objects approaching each

Figure 12.4
An elastic collision viewed from the center of mé&ssne. The angléis not determined

from conservation of momentum and energy.



other head on, and afterward we see them leavengdhision point back to back with
exactly the same speed they had before the callisilhe one parameter that is not
determined from the conservation of momentum ardgnis the angle between the
initial and final velocities of one of the objectithdeed, this angle can vary all the way
from 180 degrees in the case of a head-on collism@ degrees in the case where the
objects simply miss each other.



Main Points

¢ FElastic Collisions e

i'l'J'l
If the only forces acling during a L‘
collision are conservative forces,

then fhe Einetic energy of the systent,

deffned fo be the sum of the Kinefic

energies of the colliding objects, is

conserved. Such collisions are e {0
called elastic collisions.

> K = ZKf m,
J f

¢ Center of Mass Frame

Elastic collisions are most simply described
in the cenfer of muass frame of the colliding

objects. Center of Mass Reference Frame

The colision may caise objects to be Prowt = MruaVew =0
deflected through some angle in this frame,

Dtk their speeds will abways remuain fhie

same.



