
12.  Elastic Collisions  
 
A) Overview 
 In this unit, our focus will be on elastic collisions, namely those collisions in 
which the only forces that act during the collision are conservative forces.  In these 
collisions, the sum of the kinetic energies of the objects is conserved.  We will find that 
the description of these collisions is significantly simplified in the center of mass frame 
of the colliding objects.  In particular, we will discover that, in this frame, the speed of 
each object after the collision is the same as its speed before the collision. 
   
B) Elastic Collisions 
 In the last unit, we discussed the important topic of momentum conservation.  In 
particular, we found that when the sum of the external forces acting on a system of 
particles is zero, then the total momentum of the system, defined as the vector sum of the 
individual momenta, will be conserved.  We also determined that the kinetic energy of 
the system, defined to be the sum of the individual kinetic energies, is not necessarily 
conserved in collisions.  Whether or not this energy is conserved is determined by the 
details of the forces that the components of the system exert on each other.  In the last 
unit, our focus was on inelastic collisions, those collisions in which the kinetic energy of 
the system was not conserved.  In particular non-conservative work was done by the 
forces that the individual objects exerted on each other during the collision. 
 
 In this unit, we will look at examples in which the only forces that act during the 
collision are conservative forces.   
In this case, the total kinetic 
energy of the system is 
conserved.  We call these 
collisions, elastic collisions.   As 
an example, consider the 
collision we discussed in the last 
unit with one modification – 
instead of having the boxes stick 
together, we’ll put a spring on 
one of the boxes as shown in 
Figure 12.1. The spring will 
compress during the collision, 
storing potential energy, and 
when it relaxes back to its 
original length it will turn this 
stored potential energy back into 
kinetic energy. In this way, no mechanical energy is lost during the collision so that the 
final kinetic energy of the system will be the same as its initial kinetic energy.  
 

Figure 12.1
An elastic collision:  Box 1 moves with speed v1 and 
collides with Box 2 that is initially at rest.  A spring 
is connected to Box 2 which is compressed during the 
collision and then extends to send the two boxes in 
opposite directions. The mechanical energy of the 
two box plus spring system is conserved.  
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C) One Dimensional Elastic Collisions 
 We will start with the example from the last section.   Knowing that neither the 
momentum nor the kinetic energy of the system will change during this collision allows 
us to write down two independent equations that relate the initial and final velocities of 
the boxes.  . 
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These two equations contain six variables (the initial and final velocities of box 1, the 
initial and final velocities of box 2, and the masses of the two boxes). Therefore, if we 
know any four of these quantities, these two equations will allow us to solve for the other 
two. For example, if we know the masses and the initial velocities of both boxes then we 
can solve these two equations for the final velocities of both boxes.    
 
 There is a complication, however, that will make the actual solution of these 
equations tedious, at best.  For example, if we solve the momentum equation for the 
velocity of box 2 after the collision in terms of the velocity of box 1 after the collision, 
and plug the result back into the energy equation, we get a pretty messy quadratic 
equation that, with some effort, can certainly be solved.  
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There is, however, a better way.   Physics can rescue us from this tedious mathematical 
chore!  Namely, if we solve this problem in the center of mass frame, we can avoid 
solving any quadratic equations.  We can then determine the final velocities in the initial 
frame by simply transforming the velocities in the center of mass frame back into the 
initial frame.  We will perform this calculation in the next section. 
 
D) The Center of Mass View 
 Figure 12.2 shows the 
collision as viewed in the center of 
mass frame.  We have labeled the 
velocities in this frame with an 
asterisk. 
 
 We know the total 
momentum is conserved in any 
inertial reference frame.  What 
distinguishes the center of mass 
frame, though, and what simplifies 
the calculation, is the additional 
constraint that the total momentum is 
always zero in the center of mass 
frame.  Consequently, the single 
momentum conservation equation 
has become two equations, one for 

Figure 12.2
The elastic collision as viewed in the center of mass frame.  
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the initial state and one for the final state. 
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Note that we have chosen to use the speed variables ( the magnitude of the velocities) in 
these equations.  Therefore, we have explicitly inserted the minus signs to indicate the 
direction of the velocities.   To see how this constraint simplifies the problem, we will 
multiply and divide each term in the energy equation by the appropriate mass.   The result 
of this operation is that each term now is proportional to the square of an individual 
momentum.   
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We can now use the momentum equations to write each side of the energy equation in 
terms of the square of the momentum of just one of the particles.   
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In fact we see that the magnitude of the momentum of each of the objects individually is 
now also the same before and after the collision, although the direction of each one has 
changed. In other words, when the collision is viewed in this reference frame the speed of 
each object is the same before and after the collision.  
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This result is very important; it provides us with a very simple strategy to solve any 
elastic collision problem. We will work through such an example in the next section. 
   
E) Center of Mass Example 
 We will now work out an example that demonstrates the use of the center of mass 
frame in elastic collisions.   In the collision shown in Figure 12.1, we will assume m1 = 
2kg,  v1 = 5 m/s, and m2 = 3kg.  The boxes collide elastically and both move along the 
axis defined by the initial velocity vector (call it the x-axis).  Our job is to determine the 
final velocities of both boxes in this reference frame, which we will call the lab frame.   
 
 Our first step is to transform this problem to the center of mass system.  In order 
to make this transformation, we need to know the velocity of the center of mass in the lab 
frame. In unit 10 we determined that this velocity was just equal to the vector sum of the 
individual velocities, weighted by the fraction of the total mass each particle carries.   
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Plugging in the values for the masses and the initial velocities, we find that the  
center of mass is moving at 2 m/s in the +x direction. 
 
 We can now use this value for the velocity of the center of mass to determine the 
initial velocities of the boxes as viewed in the center of mass frame. We know that the 



velocity of an object in the center of mass frame is equal to the velocity of the object in 
the lab frame plus the velocity of the lab frame in the center of mass frame.   
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We know the velocity of the lab in the center of mass frame must just be equal to minus 
the velocity of the center of mass in the lab frame.  We can now find the initial velocities 
of both boxes in the center of mass frame by simply adding numbers that we now know.  
Namely, we find the initial velocity of box 1 in the center of mass frame is equal to 5 m/s 
-2m/s = 3m/s in the positive x-direction, and the initial velocity of box 2 in the center of 
mass frame is equal to 0 m/s -2m/s = 2m/s in the negative x-direction.   From the last 
section we know that the final speeds in the center of mass frame are equal to initial 
speeds in that frame.  Therefore, we know the final velocity of Box 1 is equal to 3 m/s in 
the negative x-direction and the final velocity of Box 2 is equal to 2 m/s in the positive x-
direction.   
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 Our final step is to transform these results to the lab frame.  We can make this 
transformation by simply adding the velocity of each object in the center of mass frame 
to the velocity of the center of mass in the lab frame.  When we make these additions, we 
see that after the collision, box 1 moves with speed 1 m/s in the negative x direction and 
box 2 moves with speed 4 m/s in the + x direction.  You can verify, using these values, 
that both momentum and energy are indeed conserved in this collision! 
 
 If we now replace the masses and initial velocities in this problem by variables 
and follow the identical procedure, we arrive at the general expressions for the final 
velocities of any two objects undergoing an elastic collision under the assumption that the 
second object is at rest to begin with and that all motion is in one dimension. 
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 We can learn a couple of interesting things from these equations. First, if the 
masses are the same we find that final velocity of the first object is zero and the final 
velocity of the second object is just equal to the initial velocity of the first. In other 
words, the objects trade roles! 
 
 Second, we see that the final velocity of the first object changes sign if m2 is 
greater than m1. In other words, if the first object is lighter than the second it will bounce 
back.  If, on the other hand, the first object is heavier than the second, it will continue in 
its initial direction with a reduced speed. 
 
 



F) Elastic Collisions in Two Dimensions 
 The last example assumed that the motion of the colliding objects was constrained 
to one dimension. We found that knowing the masses and the initial velocities of both 
objects was enough to completely determine the final velocities. We will now extend this 
analysis to two dimensions by considering the collision of objects on a frictionless 
horizontal surface without any constraint that the motion is along a single axis. An actual 
example of such as situation might be billiard balls colliding on a pool table or pucks 
colliding on an air-hockey table.  
 
 We will start by making the simplification that the mass of both objects is the 
same and that one of the objects is initially at rest.  Even in this restricted case, we can 
see that the final velocity vectors cannot be determined from a knowledge of the initial 
velocity vectors. Indeed, the final directions depend on the orientation of the objects 
when they collide. If the collision is head-on the final velocities will be along the x-axis 
just like in the previous example, but if the collision is not head-on, as illustrated in 
Figure 12.3, the final velocities can have y-components as well  

 
 What can we say about the final velocities in these cases?  Just as in the previous 
example, we get the simplest view of the collision from the center of mass reference 
frame as shown in Figure 12.4.  Prior to the collision we see the objects approaching each 

Figure 12.3
An elastic collision between two equal mass balls.  If the centers of he balls are not aligned, the collision becomes two-dimensional; 
the final velocities can develop y-components.
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Figure 12.4
An elastic collision viewed from the center of mass frame.  The angle θ is not determined 
from conservation of momentum and energy.



other head on, and afterward we see them leaving the collision point back to back with 
exactly the same speed they had before the collision.  The one parameter that is not 
determined from the conservation of momentum and energy is the angle between the 
initial and final velocities of one of the objects.  Indeed, this angle can vary all the way 
from 180 degrees in the case of a head-on collision, to 0 degrees in the case where the 
objects simply miss each other. 
 



 
 
 
 
 

 


