13. caollisions, I mpulse and Reference Frames

A) Overview

In this unit we will conclude our discussion ofl=ions and look at the energy of
a system of particles in more detail. In particwiee will start by developing a useful
relation between relative velocities that must holdn elastic collision. We will then
look at the details of the collision process arttbithuce the concept of the impulse that
describes the change in momentum of one of thectsbje a collision. Finally, we will
investigate the kinetic energy of a system of pkasi and will find that the total kinetic
energy can be expressed as the sum of the kimegrg of the center of mass and the
kinetic energy of the particles relative to theteeof mass.

B) Relative Speed in Elastic Collisions

In the last unit we discovered that the descnptibcollisions is often simplified
when viewed in the center of mass reference framgarticular, we showed that the
speed of an object before and after an elasticsawilis the same when viewed in this
frame even though its direction will be changedsashown in Figure 13.1.. We will now
use this result to obtain a relation between nadagpeeds in a collision that will hold in
all reference frames.
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Center of Mass Frame
Figure 13.1

An elastic collision as viewed in the center of mass frame. Inrdmsef
the speeds of each particle do not change.



In particular, since the speed of an object befme after an elastic collision is the same
if viewed in the center of mass frame, then itisodrue that the relative speed of the two
objects is the same before and after the colligidhis frame.

Vo =V =‘\72,f ~ Vi f \
That is, the rate at which two objects approacln egicer before an elastic collision is the
same as the rate at which they separate afterward.

We can now use this result to identify elastidismns in any inertial reference
frame. Namely, the relative velocity of two obget a given time, that is, the difference
in the velocity vectors of the objects, must bedhme in all inertial reference frames.
This claim follows from the fact that to transfobath velocity vectors to a different
inertial frame, we simply add the same vector (#lative velocity vector for the two
frames) to each initial velocity vector. This relatvelocity vector then cancels when we
take the difference of the velocities of the olgect

V28~V = (oA +Vas)- (1A *VaB)=V24 ~ V1A

If the relativevelocity of two objects at a given time is the same inredttial
reference frames, then the relatgpeed of the two objects must also be the same in all
inertial reference frames. Since we have just shihat the relative speed of the two
objects in an elastic collision is the same beéore after the collision in the center of
mass frame, then it follows that the relative spefetthe two objects in an elastic collision
is the same before and after in any inertial refeedrame!

Indeed, if we look back to the one dimensionahegia in sectiorkt of the last
unit, we see that the relative speeds of the tweotdy that is the difference in the
magnitudes of their velocities, is equal to 5 ndthlbeforeand after the collision, in
both the center of massd the lab reference frames!

C) Elastic Collison Examples

We just showed that, in an elastic collision betwévo objects, the rate at which
the objects approach each other before the callisithe same as the rate at which they
separate after the collision and that this statémsetnue in all inertial reference frames!

2y ‘Vli\=\\72,f _Vlf‘
For example, suppose we throw a ball against thieofva building. If the wall is hard
and solid and the ball is made of good hard rubioem the collision will be almost elastic

and we expect the speed of the ball to be abowgaimee before and after it bounces off
the wall.

Suppose we now consider a bowling ball, movindnwpeed/. colliding head-on
with a ping pong ball that is initially at restt we assume the collision to be elastic and
the motion to be constrained to one dimension, wihiabe the final velocities of the
balls?

How do we go about solving this problem? The thiag we do know is that if
the collision is elastic, the speed of the pinggball relative to the bowling ball must be
the same after the collision as it was before tikswn. Before the collision, the speed



of the ping pong ball relative to the bowling bahs just equal t&. Therefore, the
speed of the ping pong ball relative to the bowlvad] after the collision must also be
equal tov.

We can obtain an approximate solution by assuitiagelocity of the bowling
ball will not change much during the collision gritis much heavier than the ping pong
ball. In this approximation, we expect the fispked of the ping pong ball to be about
twice the initial speed of the bowling ball.

As a check, we can look at the exact solution twie obtained in sectida of
the last unit.

AL Sl
Lo my +mp
_ ~ 2my
Vo f = Vi
my + My

Here we see that in the limit that >> m,, we recover our approximate solution, that the
speed of the ping pong ball after the collisioab®ut twice the speed of the bowling ball.

D) Forces During Collisions

In applying conservation of momentum to collisidreween two objects, we
have been concerned only with the velocities ofaijects before and after the collision.
We now want to investigate exactly what Newtonigdacan tell us about the details of
the collision process itself.

We start with the differential form of Newton'sead law which relates the total

force on an object to the time rate of changesofibmentum.

- dp

FNet = p
We can rewrite this expression to determine thactiange in the momentum of an
object during a small timet is just equal to the total force acting on theecbmultiplied
by this time interval. If we now integrate thispegssion over the time of the collision
itself, we see that the total change in the mommandtithe object during the collision is

equal to the integral of the total force actingtioat object during this time.

t2 —
[ Fnetdt = dp = P(t2) - P(ty) =Ap
t
This integral is usually called thpulse delivered by the force.

We can use this result to define the average factiag on the object during the
collision to be equal to the change in the momeniithe object divided by the duration
of the collision.
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AP = [ Frerdt = FagAt
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This result simply reflects the differential forrhldewton's second law that we used to
get started.



E) Impulse Examples

We have just determined that the m,  =1ke
change in momentum of an object during a )
collision is equal to the product of the averag
force acting on that object and the time over
which it acts. Therefore, we can achieve the
same change in momentum by having a larg
force acting for a short time as we can havin
a small force acting for a long time.

Figure 13.2 depicts an example to
illustrate this observation. A ball of mass 1 i
released from rest from an initial height of 1
meter above the floor. It bounces back to hz ho—1 @ -
its original height. If we assume the ball isir /i =™
contact with the floor for a time of 10 ms,
what is the average force on the ball during
the collision?

To determine the average force acting h;- =0.5m
during the collision, we need to first determir
the change in the momentum of the ball. W
can use the conservation of energy during tr
ball's initial free fall to determine its speed V
just before it hits the floor and we find that it ¥ afi
is proportional to the square root of the heigt — - -
from which it was released.

Timein contact Af =10 ms

I’TlJaJI gh| = % rnoaIIVl‘fefore Figure 13.2
Visore = +/ 200 A ball is released from rest from a height
Putting in the numbers, we obtain a speed of °f 1M and rebounds to a height of 0.5 m.

conservation to determine that for the ball to floor for 10ms, what was the average
rebound to a height of 0.5 m, it must have hadorce exerted by the floor on the ball?
a speed of 3.13 m/s immediately after it left

the floor.
Vafter = \/ zghf

The change in the momentum of the ball during tiksoon is therefore equal to 7.56
kg-m/s, since the initial direction is downward ahd final direction is upward. We can
now determine the average force acting during thieson by dividing this change in
momentum by the duration of the collision to obt#ie value of 756 N.

AP = My AV
Suppose we were to repeat the exact same expenwtbrd harder ball that flexes less
and consequently spends less time in contact Whloor. If, for example, the time of



the collision is reduced by a factor of ten, therage force on the ball must be increased
by the same factor of ten to keep the change in emtuim the same. In other words, the
average force on the ball during such a collisiauld be 7560 N.

F) Energy of a System of Particles

We have seen that often the simplest descripti@olésions occurs in a
reference frame in which the center of mass otdikding objects is at rest. We will
now extend this approach to the discussion of thetic energy of a system of particles

Consider a simple system made up of two poiniglastof massm andny
connected by a massless rod. If we throw this oljegur laboratory reference frame we
know it will tumble in some complicated way, but aleo know that the center of mass
will move in a very simple way, namely that the tegrof mass will behave as though it
were a point particle having the total mass ofabgct as shown in Figure 13.3.

Figure 13.3

An object consisting of balls connected by a massled is in free fall. Although the motion of
the individual balls is complicated, the centenwss of the system must follow the parabolic
trajectory of any object in free fall.

At any instant the kinetic energy of the systeragsal to the sum of the kinetic
energies of the two particles. We can expresséeleeity of an object in the lab frame
as the vector sum of the velocity of the objedhia center of mass reference frame plus
the velocity of the center of mass in the lab rfiee frame.

Ksystem,lab = Z%m (\7| |yi ) = Z%m (vi* +\7CM )[ﬁ\_ii* +\7CM )

K gsemir = 0 3MY; +(Z%m )VCZM +(Z%mVﬁJW7CM

system,lab = KREL + KCM + I:)Total ,CM WCM
Kwstem,lab = KREL + KCM

When we make this sum, we see that the total eradrthe system as viewed in the lab
frame can be written as the sum of just two terhing first term is sum of the kinetic
energies of the objects as viewed in the centerasfs reference frame, and the second
term is the kinetic energy of the center of masg@sed in the lab reference frame. The

K



remaining terms involve the total momentum in theter of mass reference frame,
which by definition is always zero.

The result we have just derived is completely gan@he total kinetic energy of
any system of objects as viewed by any obsenaniply equal to the total kinetic
energy of the objects as viewed in the center cfsmeference frame, often called the
relative kinetic energy, plus the total kinetic Egyeof the center of mass in the
observer’s reference frame, often called the cesftarass kinetic energy.

Kwstem,lab = KFeEL + KCM

This result has two profound implications. Firkab, the total kinetic energy of a
system of particles will, in general, have two idist components. This result will
become central to our discussion of rotations értéxt unit. Second, we see that the
kinetic energy of a system of particldses depend on the reference frame of the
observer. In other words, the relative kinetic ggewill be the same for all observers, but
the center of mass kinetic energy will be differfamtdifferent observers since it will
depend on the speed of the center of mass indheefof the observer.



Main Points
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+ Impulse
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