14. Rotational Kinematics and Moment of I nertia

A) Overview

In this unit we will introduce rotational motionn particular, we will introduce
the angular kinematic variables that are used $ori#e the motion and will relate them
to our usual one dimensional kinematic variabM& will also define the moment of
inertia, the parameter in rotational motion thanslogous to the mass in translational
motion. We will evaluate the moment of inertia &ocollection of discrete particles as
well as for symmetric solid objects.

B) Rotational Kinematics

Until now our studies of dynamics have been retgtd to linear motion of objects
described in a Cartesian coordinate system, @nd z). In our recent discussions of
systems of particles, though, we have discoveratthie motion can be described as
having two components: (1) the motiointhe center of mass and (2) the motiekative
to the center of mass. As an illustration of theiororelative to the center of mass, we
will look at the rotation of an object about ansattirough the center of mass. Our first
step is to develop a coordinate system in whickdhetations can be described naturally.

Figure 14.1 shows a disk rotating about an axis
though its center. The orientation of the diskrgt a
time can be described by a single parameter: the
angle@through which the disk has rotated relative
to its initial orientation. We call this angle the
angular displacement. The time rate of change of
the angular displacement is called &mgular
velocity «, and the time rate of change of the
angular velocity is called the angular acceleration
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dt Figure 14.1 l
_da The rotation of a disk about an axis
T gt through its center is described by

These equations look strikingly similar to those we a&n angular displacemest

have used to describe one dimensional kinematics.

_dx _dv
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The reason for this similarity is simply that thigational motion can be described by a
single angular displacemerd, just as linear motion can be described by a sisghtial
displacementx.

If we now consider the special case of a congtagtilar acceleratioa, we can
derive the equations f@awand&for this motion by integrating the defining eqoats.
The resulting equations fawand & are absolutely identical in form to those desagbi



one dimensional motion at constant acceleratioh thi¢ substitutions for a, wforv,
and @for x.

0=0, +wt+iat?
wa=a, +at

W —of =2a(0-6,)

C) Relating Linear and Rotational Parameters

We can now make another useful connection betwaation and one
dimensional kinematics by obtaining the relatiopstietween the angular and linear
kinematic parameters used to describe the moti@npaiint that is a fixed distanée
from the rotational axis.

In the case of one dimensional motion alongxthgis we needed to specify
which direction we choose to be positive so thatdigns of displacement and velocity
and acceleration have meaning. In exactly the saaye we need to specify which
direction of rotation we choose to be positivelst the signs of angular displacement
and angular velocity and angular acceleration maganing.

Although we are always free to choose either tivacf rotation to be positive,
it is customary to pick the counterclockwise asgbsitive direction. With this choice,
the angular displaceme@t agrees with that usually used in trigonometrincs all
points on the disk are rotating together, we ¢~~
determine the linear displacement, speed ar V
acceleration of any point on the disk in term¢
of the corresponding angular parameters.
Figure 14.2 shows a disk turned through an y
angular displacemerit We can see that a
point located a distandefrom the rotation
axis moves through a distangalong a
circular path of radiuR. This distancsis
determined from geometry to be just equal tc
the product of the radiuend the angular
displacement, measured in radians.

s=R6

Taking the derivative of this linear distance y
with respect to time, we find a simple i
relationship between the speed of the point
and the angular velocity of the disk. (1)
Figure 14.2
ds __dé A disk rotates with angular velocity

dt dt v=Ra through an angular displacemet



Taking the derivative of this linear speed withpect to time, we find a simple
relationship between the tangential acceleratiah@fpoint along its circular path and
the angular acceleration of the disk.

d_V = Rd_a’ a=Ra
dt dt
D) Kinetic Energy in Rotations

We will now expand our discussion of rotationscoysidering the motion of a
rigid object made up of a set of point particlearmected by massless rods as shown in
Figure 14.3. This object rotates
about the fixed axis with a
constant angular velocitgy We _
will assume we know the masse: ‘;"/l—o
of each patrticlerty) and also the \
distances of each particle from
the axis of rotationr().

The total kinetic energy
of this object is defined to be the V.
sum of the kinetic energies of :
each of its parts. We found in
the last section that the speed of
rotating object relative to the axis
of rotation is just the product of
its angular velocity and its
distance from the axis.
Therefore, we can rewrite the
expression for the total kinetic
energy of the object in terms of  Figure 14.3

its angular velocity. A rigid object consisting of five point particles
K gstem = Z%m (rw)® connected by massless rods rotates with angular
velocity w.

Since this angular velocity is a
constant, we can take it, and the common factés,afutside the sum.

K gsom :%(Zmriz)“’z

We will define the remaining sum, namely, the surthe product of each mass with the
square of its distance from the axis, to be the evdgrof inertia of the object about this
axis and will denote it with the symbiol

=Y

Note that the resulting expression for the kinetiergy of this object has the same form
as the kinetic energy of a point particle.

Ksystem—%la)2

We have just replaced the velocity by the anguédoaity, and mass by the moment of
inertia.



In other words, in the same way that the mas® afigect tells us how its kinetic
energy is related to the square of its velocitg, tioment of inertia of a rotating object
tells us how its kinetic energy is related to thaeage of its angular velocity. In a sense,
the moment of inertia plays the same role in rotetl motion that the mass plays in the
simpler motions we have studied up to this pofs.we learn more about rotations, we
will see this conceptual connection between madgt@moment of inertia appear again
and again.

E) Moment of Inertia

We will spend the remainder of this unit explorthg properties of the moment
of inertia in more detail. The most obvious diffece between mass and the moment of
inertia is that the moment of inertial dependsjuast on the total mass, but also on
exactly where that mass is located. Indeed, the enbwf inertia even depends on our
choice of the rotation axis, since we are measuaihgistances relative to this axis.

We will now do a simple example to illustrate thg®ints. Figure 14.4 shows an
object made up of four point particles of equal stMdsarranged in a square of side 2
centered on the origin. Theandy axes are as shown

and thez axis points out of the page. We will first Va
calculate the moment of inertia of this object isi
rotated around theaxis. Since the distance of each L
mass from the axis is just equal th, the sum we need M —
to make to determine the moment of inertia is sanpl e—©@
I, => mr?=4mL? IL
Clearly, if we were to calculate the moment of tizer '“'1
for rotations around thgaxis, we would find it to be )
identical to the moment of inertia for rotation®abthe © ©
X axis
Figure 14.4
What about rotations around thaxis? The A rigid object consists of four

distance of each particle from thexis is clearly larger point particles, each of mabk
thanL. Indeed, using the Pythagorean theorem, we selecated at the corners of a
that the square of the distance to each massée @  square of sidel2

big as before.

I, =) mr?=8MmL’
Therefore, the moment of inertia for rotations altbez axis is twice as big as the
moment of inertia for rotations about thery axes.

We've seen from this example exactly how to caltaithe moment of inertia of
an object made up of discrete point particles abaytaxis. We've learned that the
moment of inertia does depend on the choice ofdtegion axis. In the next section, we
will generalize this calculation to the case obatmuous solid object, rather than a small
collection of points.



F) Moment of Inertia of a Solid Object

Figure 14.5 shows a thin rod of m&dsand length. centered along theaxis.
How do we go about calculating its moment of irgeftir rotations about theaxis?
Once again, as we have done so v
often, we will need to replace the ’
discrete sum we used in the last
section with an appropriate integral. M

We will call the mass per unit

length of the rodi. Each _L

b3 | =

infinitesimal piece of the rod has a “
lengthdx and a mass equal to the Figure 14.5 o _
product of this length and the mass A thin rqd of mass M and length L is aligned with
per unit length. thex-axis.

dm = Adx
The contribution to the moment of inertia from sachinfinitesimal piece of the rod
located a distancefrom the origin is just equal to the product sfmass and the square
of its distance from the axis..

dl, = dmx?
To find the total moment of inertia, we integrateepthe length of the rod.
+L/2 +L/2

|, = J-xz/idx:/l J.xzdx
-L/2 -L/2
The mass density can be taken outside the intagthive are left with the integral xf

which is just¢/3. Evaluating this expression between the limis obtain:

L/2
|Z:/1Fx3} SPENE
3 1. 12

We can replace the mass density by the total masted by the length of the rod to
obtain an expression that is proportional to tleelpct of the total mass and the square of
the length of the rod, as expected.

I, = 1 ML?
12
We know the moment of inertia depends on the chaolitke axis. Suppose we want to
calculate the moment of inertia about an axis ihparallel to the z axis, but passes
through the end of the rod rather than its middiéow does the calculation change? To
determine the moment of inertia we just do thegrakagain, this time shifting the
location of the rod to the right so that its lafdds at the origin.

L
|Z:/1Ix2dx:1/u_3:1|vu_2
! 37 73

Evaluating the integral, we see that the momemertia about the end of the rod is four
times as big as the moment of inertia about itsereihis result is reasonable, since
more of the mass is further from the axis wheas lbcated at the end of the rod rather
than at its center.



F) Moment of Inertia of a Solid Cylinder

We will now do one more example that will illuggasome general features of
moments of inertia of solid objects. Figure 16ws a solid cylinder or ma#4 and
radiusR. The axis of the cylinder coincides with thaxis and its end surfaces are
located az = 0 andz=L.

dV = drdz(rdg)
dm = pdV

1 y
X x

Figure 14.6 _ Figure 14.7

A solid cylinder of radius, A volume element in cylindrical

lengthL and mas#/. coordinates for the cylinder in Fig 14.6

Since this object has cylindrical symmetry, ouegral will be simplified if we
use cylindrical coordinates (namety,gandz) rather than Cartesian coordinates. Figure
14.7 shows the volume element illustrated as tbdymt ofdr, dzandrdg To integrate
over the mass of the cylinder, we use the massegitgm which is just equal to the
product of this volume element apdthe mass per unit volume of the cylinder.

dm = pordrdzdg

To evaluate the moment of inertia about the axsyaimetry, the z axis, we just need to
integraterdm over the entire cylinder.

L 2m R
— 2 - 3 - 3
[, Ir dm j”,or drdzdg p!dz!dgo!r dr

Thez andgintegrals are trivial, just being equal tnl2 We are left then with just the
integral ofr®. Evaluating this integral and simplifying, we shat the moment of inertia
of the cylinder about its axis is just equal tovi&’.
4
I, = M2 27‘3‘_52£MR2
TRL 4 2
Note that this result does not depend explicithttmlength of the cylinder, only on its
mass and radius. For example, if we were to aitstinder in half through a plane
perpendicular to theaxis, we would have two cylinders, each with lia¢f mass of the




original cylinder. Therefore the moment of inexifeeach new cylinder is just half of the
moment of inertia of the original cylinder.

| otal :ZIi
i

Consequently, we see that if a system is made @btwnore parts, and we know the
moment of inertia of each part about some axig) the total moment of inertia about
that axis is just the sum of the moments of inetithe parts. This result may seem
somewhat trivial, but it will prove useful later.

G) Moment of Inertia for Solid Objects

We have just determined that the moment of inefte solid cylinder about its
axis is proportional to the product of its mass #asquare of its radius. We can
determine the moment of inertia of any other obyath cylindrical or spherical
symmetry in exactly the same way. We alllvays find this same result, that the
moment of inertia will be proportional to the pratlof its mass and the square of its
radius.

I Total O MR2

The constant of proportionality will be differeif, course, for each different
shape. The larger this constant, the more mdssated far from the axis. For example,
it is easy to see that for a cylindrical shellstbonstant of proportionality is just equal to
one, since all of the mass is located at the raafitise shell.

Consider a solid sphere and a solid cylinder. ekfgect the constant of
proportionality for the sphere to be smaller thiaat for the cylinder since more of its
mass is concentrated near the axis. When we deatbelation, we see that this constant
for the sphere is 2/5 which is indeed smaller ttenfactor of %2 we have calculated for
the solid cylinder. Similarly, we expect that tenstant for a spherical shell is smaller
than that for a cylindrical shell.

| -1ure | - 2R
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solideylinder solidcsphere
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Icylindricalshell =MR I sphericalshell — 5 MR



Main Points

+ Rotational Kinematics

Rotational motion is described in
ferms of the (i) angular
displacement O, (fi) the angular
velocily a3 and (§i) the angular
acceleration oo

The displacement, veloctly, and
acceleration of any point that is
rolaling is proporfiond fp the
corresponding angular parameter

* Moment of Inertia & Kinetic Energy

The Moment of Inertia of a system qf For Discrete Distributions  For Continuous Distributions
particles about an wds is defined fo be the

sum of the product of the mass and the 1= mr} I:Irzdm
seuare of the distance from the axis for ail

paris of the system

The kinetic energy of a system of particles Rotational Kinetic Energy

iy equal fo 1 Hie product of the square of K :lfmz

the angular velocity and the moment of D

inerfia about the axis gf rolation.

* Moment of Inertia of Cylinders and Spheres

Solid Cylinder Cylinderical Shell
The moment of inertia for any I =2 MR® 1= MR
crlindrical or spherical object s 5

proporfional fo the prodict of the

seuare of the radius of the object and

fhe fotal mass of the object.

Solid Sphere Spherical Shell
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