16. Rotational Dynamics

A) Overview

In this unit we will address examples that comtio#h translational and
rotational motion. We will find that we will nedabth Newton’s second law and the
rotational dynamics equation we developed in tBedait to completely determine the
motions. We will also develop the equation thahesrotational analog of the center of
mass equation. Namely, we will find that the cheaingthe rotational kinetic energy is
determined by the integral of the torque over thgudar displacement. We will close by
examining in detail the motion of a ball rollingthwut slipping down a ramp.

B )Example: Diskand String

In the last unit we developed the vector equaditiah determines rotational
dynamics, that the net torque on a system of pestebout a given axis is equal to the
product of the moment of inertia of the system ahboat axis and the angular
acceleration.

Tnet =10

We will now apply this equation to a number of exdes. We will start with the solid
cylinder, mounted on a small frictionless shafbtigh its symmetry axis, as shown in
Figure 16.1. It has a massless string wrappedadras outer surface. The string is
pulled with a forcé= causing the cylinder to
turn. Our task is to determine the resulting
angular acceleration of the disk.

We will start by defining the system to ﬂ
be the disk and calculating the torque exerted '
this system about the rotation axis. The torqu
is produced by the applied forEewhich always
acts at a distande from the axis. Furthermore,
the direction of the force is always )
perpendicular t&, the vector from the axis to ~ Flgure 16.1 _
the point of application of the force. Therefore A forceF is applied to a string wrapped
the torque vectoiRXF) has magnitude equal to aTO‘_‘”d a solid cylinder mounted on a
the product oR andF and a direction, obtained frlctlonles_s shaft prodgcmg an angular .
from the right hand rule, that points along the acceleration of the cylinder about its axis.
axis, to the right in the figure.

RxF =1a
The direction of the angular acceleration mustheesame as that of the torque.
Consequently, since the disk was initially at rdst, disk rotates in the direction shown
and its speed increases with time. Since we kiewtoment of inertia of a solid disk
about its axis of symmetry, we can solve for thgnitaide of the angular acceleration.

1=ivMr = g=2%
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C) Combining Trandlational and Rotational Motion

Figure 16.2 shows the disk from the last sectigh & weight added to the end of
the string. When we release the weight, the wdalld, pulling the string and causing
the disk to rotate. In this example, we must d¢
with both the translational motion of the weigh
and the rotational motion of the disk. We wan
to calculate the resulting linear and angular
accelerations.

How do we go about starting the
calculation? To determine the motion of the
weight, we will start by writing down Newton'’s
second law. There are two forces acting on tr
weight: the tension force exerted by the string
pointing up and the gravitational force exerted
by the Earth pointing down. We will choose tF
positive y axis to point down here which will
result in a positive linear acceleration.

mg—-T =ma
For the rotation of the disk, we have the same

equation as before, with the applied foFce
replaced by the tension forde 5
RT =la d

We now have two equations and three :

unknowns: the tension and the linear and Figure 16.2 _ _
angular accelerations. We need another A amassnis attached to a string which
equation in order to solve the problem. The keylS Wrapped around a solid cylinder. As
here is to realize that since the string does not the mass falls, the string unwinds,

slip, the length of string that unwinds is equal to producing an angular acceleration of the
the arc length through which the disk turns! cylinder about its axis.

Therefore, we can use our result from the last

unit that relates the linear acceleration of a pomthe rim to the angular acceleration of

the disk.

a=Ra
We now have three equations and three unknownistha@tlis left to do is simply to solve
these equations. For example, we can first refgfeeangular acceleration in the
rotational equation by the ratio of the linear derion to the radius of the disk to
obtain:

rT=12 = 1212
R R

We can now add this equation to the Newton’s setandequation for the weight in
order to eliminate the tension.
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We can now eliminate the moment of inertia by stittstg in its value in terms of the
mass and radius of the disk to obtain our resulthife acceleration of the weight:.

m+;M J
We see that the acceleration of the weight istlessg by a factor determined by the
masses of the weight and the disk. We can novthis&alue for the linear acceleration
to determine the tension in the string:
M

T=m(g-a) mg(l\/l +2mj
Here we see that the tension is less than the wieijganother factor determined by the
masses of the weight and the disk.

mg = a(m+iM) = g(

D) Work and Energy in Rotations

We now want to look at the rotational dynamicsagopn in the context of energy.
Recall that by integrating Newton’s second lawd@ystem of particles, we obtained the
center of mass equation, namely that the total asaopic work done on the system is
equal to the change in the center of mass kinaeeegy, calculated as if the system were
a point particle having the total mass of the sysé®d moving with the velocity of the
center of mass.

J‘ Ii'Net mg CM = A(% rr'V(ZZM )

We can obtain an exactly analogous equation fiatiomal motion relative to the
center of mass. The derivation follows closelyphevious derivation of the center of
mass equation. Namely, if we replace the angueelaration dcJdt) in the rotational
eqguation by the product edandda/dé,

_da _dfda _ da

0’ = I
dt dt dé dé
we obtain an equation that relates the net torQoetaan axis passing through the center
of mass to the rate of change of the angular viglécithe angular displacement.

B da
Tnet = ICM w@

If we now integrate this equation, we find the tielaship we are looking for.
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Namely, that the integral of the torque over thgudar displacement is equal to the
change in the rotational kinetic energy. Thistieleship is completely general and it will
prove to be a powerful tool in solving rotationabplems.

This result is actually more familiar than it migieem. For example, if we
evaluate the integral of the torque over the angliplacement for the rotating disk in
the last section, we find that it is just equalite work done by the tension force!
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Namely, the torque is constant and equal to thdymtoof the tension and the radius of
the cylinder, while the change in angular displaeetas the weight falls through a
distanceD is just equal t®/R. Consequently we see that the integral of thearque
over the angular displacement is indeed equalgg@tbduct of the tension and the
displacement of the weight which is just equah®work done by the tension force!

E) Total Kinetic Energy of a Rolling Ball

We have previously shown that the total kinetiergy of a solid object is just
equal to the kinetic energy of the center of mdgbeobject plus the kinetic energy due
to the rotation of the object around an axis thiotige center of mass.

1 1
Ko = 5 M 1o Ve + 5 | o &°

The first term is called the translational kinegitergy of the object; the second term is
called the rotational kinetic energy. For caseshich the object is rolling without
slipping, we can simplify this expression since déngular velocity and the center of
mass velocity are related in a very simple way.

Figure 16.3 shows the ball rolling through one tation. As the ball rotates through an
angular displacemer, the center of mass moves through a distance éujtia¢ arc

Figure 16.3
A ball rolls without slipping through a distancetttorresponds to one
complete revolution of the ball about its centdre Tenter of the mass has
traveled a distance gyt = V(217 @) which is also equal torfR.
Consequentlyy, = Raw

length which is equal to the product®Bnd . Therefore, we see that velocity of the
center of mass is just equal the product of theukangelocity of the ball and its radius!

We can now combine the kinetic energy of the aemitenass with the kinetic
energy of the rolling ball relative to the centénuass to obtain the total kinetic energy
of the ball. Since the angular velocity of a hidt is rolling without slipping is simply



related to its translational velocity, we can reevthe total kinetic energy totally in terms
of the ball’'s translational velocity.

1 1, (Vo \
KTotaJ ZEMTotaJV(ZZM +§ICM (%J

Substituting in the moment of inertia for a solfthere about its axis (28w R’) into
this equation we obtain our final result:
2
KTotaJ = 1_0 M Total V(Z:M
Note that the total kinetic energy is now biggearthvhat it would be if the ball were
sliding with the same speed, since we need to atdouthe additional kinetic energy
due to rotation.

F) Ball Rolling Down a Ramp
We have just determined the total kinetic enerfgy leall that rolls without
slipping. We will now apply this result to thewstion shown in Figure 16.4 where we
see a solid sphere, released from rest at theftapamp, that then rolls without slipping
to the bottom. Our task is to determine its speledn it reaches the bottom.
! (
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Figure 16.4

A ball is released from rest at the top of a ramg @lls without slipping to the bottom.
The speed of the ball at the bottom can be detewrfiom energy considerations.

How do we go about solving this problem? We haargainly solved similar problems
when the object was sliding, rather than rollingwd the ramp. In those cases, we
applied the center of mass equation that sayshieathange in kinetic energy is equal to
the macroscopic work done by all forces actinghendbject.

J Ii.Net mg CM = A(% rnvéM )



The center of mass equation still applies herentheroscopic work done on the ball is
equal to the product of the displacement of théezesf mass and the difference between
the component of the weight down the ramp andribgdnal force.

jﬁm @, =(mgsind- f,)Ax,, = (Mgsind-f)Ax,, =AEm2,)

We cannot determine the final velocity of the cenfemass from this equation, though,
because we do not know the magnitude of the fnetidorce.

We can determine the magnitude of the frictionaté, however from a
consideration of the rotational energy equatiornaee recently derived, namely that the
product of the net torque and the angular displacens equal to the change in the
rotational kinetic energy.

62
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The net torque is just equal to the product offtlitional force and the radius of the ball.

Tw = fkR

We demonstrated in the last section that the proafuibe radius of the ball and the
angular displacement is just equal to the displacgrof the center of mass. Therefore,
we can relate the change in the rotational kirertiergy of the ball to the product of the
frictional force and the displacement of the ceofanass.

1:KAXCM = A(% I CM a)z)
Combining this information with the center of masmiation, we obtain our final result:
the change in the kinetic energy of the center a$srplus the change in the rotational

kinetic energy relative to the center of mass isabtp the work done by the gravitational
force.

A(%mvéM )+A(%ICM @) = mgsinAhx,

G) Acceleration of a Rolling Ball

In the last section we determined that the chamgjee kinetic energy of a ball
rolling down a ramp was just equal to the work dbypgravity. We would now like to
determine the speed of the ball at any arbitramgti In other words, we would like to
calculate the acceleration of the ball.

We will start by drawing the free-body diagramsaswn in Figure 16.6 and then
writing down Newton’s second law that determinessiotion of the center of mass.
Mgsingd - f, =Ma,
We would like to solve this equation for the accatien of the center of mass, but we
don’t know the magnitude of the frictional forcelhe only thing we know about the
frictional force is that it is big enough to kedye toall from slipping.

The key to finding the magnitude of this forcedsealize that it is the frictional
force that supplies the torque that produces tigallan acceleration of the ball.
Therefore, the other equation we need is the ootatiequation about the center of mass
of the ball.



fK R = I CM aCM
The magnitude of the torque is just equal to tloelpet of the radius of the ball and the
frictional force. The direction of the torque o the page. Therefore, the angular

v, =0
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Figure 16.5
The free-body diagram for a ball rolling withouipgling down a ramp.

acceleration of the ball is just equal to the magte of the torque divided by the moment
of inertia about an axis passing through the ceofterass of the ball.
— fK R
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Looking at the two equations we now have (Newt@e'sond law for translations and
rotations), we see we have three unknowns, thedinial force and the linear and angular
accelerations. We need to eliminate one more umkrand that we can do because we
know that in rolling without slipping, the angukacceleration about the center of mass is
just equal to the acceleration of the center ofsigded by the radius of the ball.

—_ aX
Qcon = E
Making this substitution for the angular accelenatiwe can now solve for both the

magnitude of the frictional force and the accelerabf the center of mass.
_X:fK_R:f_K = fK :gMax
R low 2MR 5

Mgsing - f, = Ma,
We find that the acceleration of the center of msssnaller than that of an object sliding
down a frictionless ramp inclined at the same afgtech was equal tgsiné).

5 .
a, =—gsind
X 79



H) Why Did That Last Derivation Work?

We just derived the acceleration of a ball rollmighout slipping down a ramp by
applying the rotational equatiom = la) in which we evaluated the torque about an
axis passing through the center of mass of the Ialcall that we obtained the rotational
equation from Newton’s second law and that Newtee®ond law is valid in inertial
reference frames. The reference frame of theibalkarlynot an inertial reference
frame. What is going on here?

The surprising answer to this question is thatam®always apply this rotational
equation, even for an object that is acceleratsdong as we are considering only
rotations about the center of mass of the objeliiis result is certainlyiot obvious and
its proof requires the introduction of a conceigular momentum, that we will discuss
in a future unit. For the benefit of those of ywelio are curious, we will present a proof
of this claim now.

We will start with the definition of the angularomentumL of a particle about
some axis as the as the cross product thfe vector from the axis to the particle, witk th
momentum vector.

LErxp
Taking the derivative df with respect to time, we get two terms. The fiesin is zero
since the velocity vector (it) and the momentum vector are parallel. Weussn
Newton’s second lawH = dp/dt) to write the second term as the net torque on the

particle.
i:(ix pj{rx%):OH”XIf:f

We will use this equation which determines the tadependence of the angular
momentum vector of the particle, to show that ttatronal equationz(= I a) holds in
the frame of the ball that is rolling without slipg down the ramp.

The first step is to obtain an important resuli@@rning the angular momentum

of a system of particles, namely:

[=Coy +L0*
WhereL is the total angular momentum of a system of gagiin a particular reference
frame,Lcwm is the angular momentum of the center of maskegystem in that frame,
andL* is the angular momentum of the system in the caitmass frame.. The proof is
straightforward, but a little lengthy. We startdwpressing the displacement vector is the
specified frame in terms of the displacement vectdhe center of mass of the system in
that frame and the displacement vector in the cafteass frame.

h=rcm *+hi*
We now write down the expression for the angulammetum of a system of particles:

L=X(fom +7 *)xp; =(fom xX i)+ Z (7 **p;)

The first term on the right hand side of the |lagiation is equal to the angular
momentum of the center of mass since the sum thalindividual momenta is just the
total momentum of the system!



Com =(Fom xZ pi)
The second term on the right hand side must bargalar momentum of the system in
the center of mass frame. To demonstrate thimghaie need to first expand the
individual momenta in the specified frame in terwhshe individual momenta in the
center of mass frame.

*

o di_ (do o do ) o
Pi =m a—mi(arcwl ari j—miVCM m 4t
35 xp)=x i xmvey )+ (i xmy; )
The first term on the right hand side of the lagiation is zero since we can take the
velocity of the center of mass vector outside tha,deaving the mass-weighted sum of
the displacements in the center of mass which jnasbe zero!
Z(ﬁ* xm Vo )=(Zmiri*)x\7(:|v| =0
We are left then with our result:
> (F *xﬁi):Z(ﬁ* Xmivi*): C
— |: = I:CM + E*
We are now finally ready to prove what we set oytriove in the beginning of this
section, that we caalways apply the rotational equatiom € | @), even for an object that
is accelerating, as long as we are considering mtétions about the center of mass of
the object!

Suppose we fix oury coordinate system to the ramp as shown in Figare. 1
This system is clearly an inertial reference fratherefore our angular momentum

Y,
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Figure 16.6
The displacement vectoyin the inertial reference frame fixed to the ramp
(x-y) is equal to the vector sum of the the displacemeator of the center of
massRg,, plus the displacement vector relative to the ceoftenassy,*.



equation holds in this frame. Considering the tmalle a system of particles, we can
write down the equation of motion in terms of timee rate of change of the angular
momentum of the system:

_ dL;
I =>—
2T =2 at
We will now expand the torques in terms of the wdtlial displacements:

7 =3 (5 x ﬁi)=2((fcwl i )" 'fi)

Similarly, we can expand the angular momentum efsystem:

ag; - i

—L =gy +L
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Putting this altogether, we obtain the equation:
2w+ Jx )= foow + )
We now have the equation we need. We just haegpgand the terms and simplify.
Unfortunately, once again this process is a liglegthy. We start by expanding the time
rate of change of the angular momentum of the cerfitmass term:
d - d,. ~ ~ _ = ~
P Lem = pm (Fom *MotVem ) = (Vem * MrotVom )+ (Fom X Mrordom )
The first term on the right hand side of the |lagiadin is zero since the cross product of
any vector with itself is zero. The second terragsal to the net force on the system
from Newton’s second law. Therefore, we have olgéithe expression for the time rate
of change of the angular momentum of the centenaxss:
d - -~ _
aLCM =(rCM ><Z':i)
If we now substitute this form bak into our mastquation (three above), we get
cancellations that leave us with:
* — d —%
(F x F )= —L
20 R )=y

We have now obtained our result: that the sunm@torques about an axis through the
center of mass is equal to the time rate of chahg@gular momentum of the system in
the center of mass frame. For a rigid, symmesotid object (such as our rolling ball),

L =1cm @M
Differentiating this angular momentum with respiectime, we obtain our result:
d - d
—L =1 —@ =lepmd
ot CM 4t wem = lem

— TCM = ICM a
It's been a long haul, but we have finally provied important result that the sum of the
torques about the center of mass of a system ttlesris always equal to the product of
the moment of inertia about the center of masstia@@ngular acceleration about the
center of mass, even if the system itself is acattey!!



Main Points

» Center of Mass Equation for Rotational Motion

Integrafing the rofafiond

dynanics equation, we determined [ {

fhat the change in the rofafional J' i 2
kinetic energy is equal o the J T Net do = A( 7 Loy @ )
infegral of the torgue over the ‘
angular displacement.

* Translation + Rotation: Rolling Without Slipping

The fotal Kinetic energy of an object is 1 . 5
equal fo the sum of the transiational kinteic Ky = 0 Mvgy, + =10
energy of the cenier of mass and tie
rofational molion about thecenier gf muss.
Aoy = : gsin@  forasolid sphere
T i
H ~~
Applying the center of mass equation and —J— e ’ ~

ity rofational analog, we defenmined that

the chuange in the fotal kinetic energy of fhie 5 5
bail rolifng without stipping down the ramp &%MVCM )_|_ &%ICM‘B )
ix equual fo the work done by gravily.

Appiying Newfon’s second low and the 5
rotational dynamics eguation, we ol "

ral dymamics eqiation, dcpr = — gsmo
determined the daceeleration of the ball T
down the ranp.



