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Equipment list 
Motion detector 
Closet door inclined plane setup: 
 Door 
 Wood barricade 
 Foam cushion 
 Large c- clamps to hold wood barricades (2) 
 Special rod with lattice clamps to hold the door 
 Table clamps (2), AL rods (2), and right angle clamps to hold special  
  rod (2) 
 Green, wide- mouthed, velcroed clamp to hold the motion detector 
Cart with reflector 
Items per each room: 
 Electronic level (1) 
 Red- taped batons (2) 
 Black- taped batons (2) 
Mini- basketball 
Solid sphere (bocce or croquet ball) 
Black plastic wheel 
Two holders for the spheres when they’re not in use 
Objects in cart at front of room 
 Six sets of three hollow cylinders of equal radius but different lengths 
 Six sets of three hollow cylinders of different radii but equal lengths 
 Six sets of three solid  white plastic cylinders of different radii but equal lengths 
 Six aluminum solid cylinders and six green plastic solid cylinders which, along with  
 the smallest white plastic solid cylinders, comprise six sets of three solid   
 cylinders of equal size but different mass 
 
 
Computer file list 
MacMotion file “211-06 standards” 
MacMotion file “211-06 rolling” 
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Investigation 1:  The Moment of Inertia 
Goals: • To study how two objects having the same mass can have dramatically 

different “resistances” to changes in rotational velocity (i.e., moments of 
inertia). 

 • To study how the moment of inertia of an object depends upon the object’s 
 shape, size, and construction. 

Introduction: You have studied the equations describing translational motion (falling, 
sliding, bouncing, etc.).  Now you will study in greater detail the kinematics 
and dynamics of rotating bodies.  The equations you will use are 
straightforward extensions of the equations you already know for translational 
motion.   

 The new idea you will study in this laboratory is that of the moment of inertia 
of an object.  Mathematically, the moment of inertia I relates an applied torque 
τ to the resulting angular acceleration α through the equation, 

      τ = Iα     (Eq. 1) 
 The moment of inertia of an object provides a measure of how hard it is to 

change that object’s rotational velocity.  Thus, the moment of inertia is to 
rotational motion what the mass of an object is to translational motion. This 
analogy is illustrated schematically in Figure 1 below. 

 
   Figure 1.  Rotational vs. translational motion 
  

 In this investigation, you will study how an object’s moment of inertia affects 
an object's rotation.  You will also study the motion of several simple objects 
with different moments of inertia. 
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Activity 1:  Spare the Rod, Spoil the Student 

Introduction: In this activity you will twirl different rods or “batons” in order to (a) study their 
moments of inertia and (b) quench that secret longing you’ve always had to be a 
drum major or majorette. 

Procedure: 1. Compare the masses of the two rods. 
•  Select two rods, one with black tape and the other with red tape. 
•  Grasp one rod in each hand and simply hold them steadily.  The two 

rods should both have the same mass.  Switch hands to make sure of 
this. 

Prediction: Do you expect it will be harder to rotate each rod about: (a) the rod’s long axis, 
as shown in Figure 2; or (b) an axis perpendicular to the length of the rod 
running through the rod’s center, as shown in Figure 3?  Why? 

 ___________________________________________________________ 
 ___________________________________________________________ 
 
 2. Check your prediction.  First, pick one of the rods (it doesn’t matter which 
  one).  Now, rotate this rod about its long axis (as shown in Figure 2). 

•  You can do this by placing the rod between your hands and making a 
rolling action back and forth, as with Play-Doh. 

 

 
 

Figure 2. Rotating a rod about its long axis in Activity 1 
 
 3. Now, try rotating the same rod about an axis which is perpendicular to the 

length of the rod and which passes through the rod’s center (as shown in 
Figure 3). 

•  Twirl the rod in a propeller-like motion.  Be sure to hold the rod in the 
center as you twirl it. 

•  Try rotating the rod in one sense (say, clockwise), then quickly 
reverse directions. 
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 Figure 3. Rotating a rod about an axis perpendicular to the rod’s long axis in Activity 1 
 

Question: •Was your prediction correct?  About which axis was it easier to rotate the rod?  
 If your prediction was incorrect, can you explain your result now? 

 ___________________________________________________________ 
 
________________________________________________________________ 

 
Procedure: 4. Rotate both rods about their long axes (see Figure 2), in order to 
(continued)  compare the moments of inertia of these rods about this axis. 
 
 5. Rotate both rods about an axis perpendicular to each rod (see Figure 3), in 

order to compare the moments of inertia of these rods about this axis. 
 

Questions: •Is one rod significantly harder to rotate about the long axis than the other rod?  
 If so, which?   

 ___________________________________________________________ 
 ___________________________________________________________ 

 •Is one rod significantly harder to rotate about the perpendicular axis than the 
 other rod?  If so, which?   

 ___________________________________________________________ 
 ___________________________________________________________ 
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Questions: •What is it about the rods that gives the differences noted above?  That is, can 
(continued)   you tell what differs in the construction of the two rods?   
 ___________________________________________________________ 
 ___________________________________________________________ 

 •Why does this difference in construction affect the rotation about one axis but 
 not the other? 

 ___________________________________________________________ 
 ___________________________________________________________ 
 
 

Activity 2:  Sisyphus’ Revenge 
Introduction: The moment of inertia depends in general about which axis the object is 

rotated.  Moments of inertia for spheres and cylinders (about the principal 
axes) can be written I = ηMR 2, where η is a constant which is dependent 
upon the object’s mass distribution, M is the object’s mass and R is the 
object’s radius. This dependence on R is consistent with what you should 
have observed in Activity 1; i.e., the farther away from the axis of rotation the 
mass of an object is located, the harder it is to alter the object’s rotational 
velocity. Table 1 provides a list of moments of inertia for several standard 
shapes in the following instances:  Spheres - for rotation about an axis 
through the center of the sphere; Cylinders - for rotation about the long axis of 
the cylinder. Notice that η has the values 2

5
,2
3

,1
2

, and 1, for the solid sphere, 
hollow sphere, solid cylinder, and hollow cylinder, respectively.  In other 
words, the gods could have been tougher on Sisyphus!  They could have 
made him roll a log with the same mass and radius as the stone he was 
given.  Now, its your turn...hopefully this activity won’t feel like an eternity in 
Hades. 

 
Solid Sphere Hollow Sphere Solid Cylinder Hollow Cylinder 

 

 

2
5

MR2  
2
3

MR2  
1
2

MR2  MR2  

Table 1.  Moments of inertia for spherical and cylindrical objects 
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Procedure: 1. Set up the motion detector at the top of the ramp.   
• Make sure that the motion detector is securely fastened in the clamp 

at the top of the ramp.  Make sure that the motion detector “sees” the 
objects rolling all the way down the ramp. 

 2. Set up the computer. 

• Start MacMotion by double-clicking its icon on the desktop. 

• Open… the file Standards from the 211 Lab Files folder. 
 

 3. Determine the angle at which the table is tilted.   

• Measure the angle yourself using the “digital level” your TA will 
provide. Record both the angle and the sine of the angle below.   

  θ   =  ________  sinθ  =   ________ 

 

Predictions: •Consider an object rolling down an incline having an angle θ (see Figure 4).  
 On what parameters would you expect the acceleration, a, of this object to 
 depend?  Explain your reasoning. 

 _________________________________________________________ 
 _________________________________________________________ 
 _________________________________________________________ 
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Predictions: 
(continued) 

R

θ
θ

F friction

Mg cosθ

Mg sinθ

=Fgravity Mg

 
Figure 4.  A rolling object of mass M, radius R, and moment of inertia I 

 
  To answer the previous prediction more quantitatively, consider an object 

rolling down an incline of angle θ (Figure 4).   The following equations apply: 
 (1) The sum of the forces yielding the object's translational acceleration a 

 along the ramp is given by 

   = �F Mg  sinθ   - Ffriction  =  Ma  (Eq. 2) 
 (2) The sum of the torques providing the objects rotational acceleration α 

 about its center of mass can be written: 

   τ = Ffriction R = Iα∑  (Eq. 3) 

 (3) Because the objects roll without slipping, one also has the following 
 relationship between the translational and rotational accelerations 

  a = Rα (Eq.  4) 
 Using Equations 2 - 4 above, one can derive a relationship for the 

acceleration of the object down the incline in terms of θ, η=I/MR2, and 
fundamental constants, 

 

  

a = g sinθ

1 + I
MR2

  =   g sinθ
1 + η

 

(Eq. 5)

 
  

 •If you rolled each of the objects in Table 1 down the incline provided, as 
 illustrated in Figure 4, what acceleration values do you predict for each of 
 these objects?  Record your predictions in Table 2. 

 

 



© University of Illinois  Physics 211 - Lab 6  Page 7 of 20 
 

Object Predicted 
Acceleration 

Measured 
Acceleration 

% 
Difference 

Hollow  
Cylinder 

   

Solid 
Cylinder 

   

Hollow 
Sphere 

   

Solid 
Sphere 

   

 Table 2.  Predicted and measured accelerations for Activity 2 
 

Procedure: 4. Test your predictions by making the measurements. 
(continued)   

• Choose one of the objects listed in Table 2.  Hold it at the starting line 
and start graphing.   

• After about a second, release the object.  Make sure the motion 
detector can see it all the way down the ramp and that you have a 
nice period of constant acceleration. 

  
 5. Find the average acceleration for the object. 

• Select Analyze Data A from the Analyze menu. 

• Using the mouse-down-drag technique, highlight this period of 
constant acceleration and then select Statistics… from the Analyze 
menu.   

• Record this mean acceleration in Trial #1 of Table 3, under the 
column heading associated with the object you just measured. 

 
6. Complete Table 3 for each of the four shapes.   

• Repeat steps 4 and 5 for a total of three trials for each object, 
recording the data for each trial in Table 3.   

• Average the results and record in Table 3. 
 

Trial Hollow 
Cylinder 

Solid  
Cylinder 

Hollow 
Sphere 

Solid 
Sphere 

Trial #1  
Acceleration: 

    

Trial #2  
Acceleration: 

    

Trial #3 
Acceleration: 

    

Average of the  
Trials: 

    

  Table 3.  Measured average accelerations of standard shapes in Activity 2
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Procedure: 7. Using the average value from all the trials in Table 3, record your measured 
(continued)  acceleration for each of the four shapes in the appropriate column of Table 2.  

Determine the percent difference between your measured and predicted 
accelerations for each shape. 

 

 

 

Questions: The questions following concern two objects A and B of equal size and mass.  
• Object A has most of its mass placed near its center 

• Object B has most of its mass placed near its rim 

 • Which one will most quickly roll down a ramp, assuming that they both start 
   from the same place and at rest? Circle your answer.   

    Object A  Object B 

 • If both of the objects A and B have the same mass, which has the greater 
 moment of inertia? Circle your answer.   

    Object A  Object B 

 •Consider the black plastic wheel at your table (ask your TA if you can’t find 
 this wheel for some reason).  First, make a prediction of the coefficient η = 
 I/MR2 for this object.  Record this prediction in Table 4, and explain below how 
 you arrived at your estimate. 

 ___________________________________________________________ 
 ___________________________________________________________ 
 ___________________________________________________________ 

 
  Next, measure the coefficient η  by rolling the object down the incline.  Record 

your measured value in Table 4 and compare it with your prediction. 
 

Object Predicted 
η 

Measured 
η 

% 
Difference

Plastic  
Wheel 

   

Table 4.  Predicted and measured values of η



© University of Illinois  Physics 211 - Lab 6  Page 9 of 20 
 

Activity 3:  Roller Derby 
Introduction: In this activity you will hold “races” between pairs of standard shapes after 

making predictions about the outcomes of these “races.”  Place your bets! 
 

1344

0576

STANDARD
SHAPE

INVITATIONAL

 
Figure 5.  The Competitors 

 
 
Procedure: Now that you have seen how different mass distributions affect the speed of 

rolling objects, you will explore what else matters in determining how fast an 
object rolls down a hill. 

In the rest of this activity, you will race different sets of objects which are 
similarly shaped, but which vary in certain other key attributes (such as radius, 
mass, length, density, color, cost, etc.).  You will observe which of these 
attributes affects the acceleration of these objects as they roll down the ramp.  
In the last activity you measured this quantitatively.  Now you will just compare 
them qualitatively (i.e., you will just race them against each other.)   

In this first race, you will predict the outcome of racing (rolling) a series of solid 
cylinders down the ramp.  These objects have the same shape and size, but are 
made of different materials (so each has a different mass).  Note:  To get a “fair” 
race, try holding the objects in place with a meter stick, then start the race by 
quickly moving the stick forward to release the objects.   

 1.  Race A:  A set of solid cylinders with different masses.   

• Find and consider the set of solid cylinders in Figure 6.  (Bert is made 
of (green) plastic, Ernie of (white) teflon, and Grover is aluminum.)   

Bert Ernie Grover

 
Figure 6.  Solid cylinders in Race A 
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Predictions: •Which cylinder in Figure 6 has the largest moment of inertia?  Why?   

 ___________________________________________________________ 
 ___________________________________________________________ 
 

 •Which cylinder, if any, will win Race A?  Why? 

 Consider this:  Would the cylinder with the smallest moment of inertia roll 
faster?  Or would it roll down more slowly because the torque due to gravity and 
friction would be less?  Would these two effects cancel each other out?   

 ___________________________________________________________ 

 ___________________________________________________________ 

 
Procedure: 2.  Check your predictions by making the measurements. 
(continued) 

• Run Race A.   Take the objects and position them at the same place 
at the top of the ramp.  Without pushing, release the objects. 

• Record these results for this race (Race A) in Table 5.   
 
 3.  What if you compare a set of solid cylinders with different radii, but constant 
   length and density? 

• Race B: A set of solid cylinders of differing radii.   

• Find and consider the set of cylinders in Figure 7.  (They are all made 
of white plastic.)   

Fezzik

Inigo
Vizzini

 
Figure 7.  Solid cylinders of different radii for Race B 
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Predictions: •Which cylinder in Figure 7 has the largest moment of inertia?  Why?   

 ___________________________________________________________ 

 ________________________________________________________________ 

 •Which cylinder, if any, will win Race B?  Why? 

 ___________________________________________________________ 
 ___________________________________________________________ 

 
Procedure: 4.  Check your prediction.  Run Race B. 
(continued) 

• Take the objects and position them at the same place at the top of the 
ramp.  Without pushing, release the objects.   

• Record your results for this race (Race B) in Table 5.   

Now, consider what would happen if you increased the radius of a hollow 
cylinder, while leaving the length alone.  Will this produce a different outcome 
than in Race B?  With a hollow cylinder, all the mass is out at the rim, so the 
change in the moment of inertia should be easier to visualize.   

  
 5. Race C:  A set of hollow cylinders of differing lengths, but constant thickness, 

density, and radius. 

• Find and examine the set of hollow cylinders depicted in Figure 8. 
   

Larry Moe Curly

 
Figure 8.  Hollow cylinders of differing lengths for Race C 
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Predictions: •In which direction does the moment of inertia increase as we view the objects 
 in Figure 8 (to the right or left)?  Why?  (Hint: Think about the fundamental 
 quantities which are different among the cylinders and whether or not they 
 matter.)   

 ___________________________________________________________ 
 ___________________________________________________________ 

 •Which cylinder, if any, will win the race?  Why?  (Hint: Ask yourself if a 
 cylinder would roll faster if you sawed it in half.) 

 ___________________________________________________________ 
 ___________________________________________________________ 

Procedure: 6.  Check your prediction.  Run Race C. 
(continued)   

• Take the objects and position them at the same place at the top of the 
ramp.  Without pushing, release them as discussed before. 

• Record your results for Race C in Table 5.   
 

Race Contestants Race 
Winner 
(or tie) 

Varying 
Physical 

Parameter(s) 

Do the 
parameters

matter? 
A Bert Ernie Grover

 

   

B Fezzik

Inigo
Vizzini

 

   

C Larry Moe Curly

 

   

 Table 5.  Daily Racing Form 
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Questions: •Consider the acceleration a given in Equation 5.  According to this  equation, 
on what variables does the acceleration of the rolling object  depend?  
Which of these variables were changed in each race? 

 ___________________________________________________________ 
 ___________________________________________________________ 
 ___________________________________________________________ 
 ___________________________________________________________ 

 •The acceleration of each object should depend only on the variables you 
 listed above.  Explain how your race results confirm this assertion.   

 ___________________________________________________________ 
 ___________________________________________________________ 
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Investigation 2:  Energetics of Rolling Motion 
Goals: • To study how energy is distributed when both translation and rotation occur 

simultaneously. 
 • To investigate whether total energy is conserved in this case. 
 
Introduction: It should make intuitive sense to you by now that an object has energy by 

virtue of the fact that it is moving through space, sliding across a track, or 
falling.  We have identified this type of energy as translational kinetic energy.  
Similarly, the mass elements that make up a rotating object are also moving 
through space; this results in an additional kinetic energy contribution which 
we call rotational kinetic energy.  For example, a moving merry-go-round has 
rotational energy associated with the rotational motion of all the mass 
elements, especially the faster-moving ones near the rim. 

 
 

Activity 4:  We’re Rollin’ Now 

Introduction: In this activity you will compare the motions of a cart, a ball (solid sphere), and a 
hollow disk in order to examine how the shape of an object influences the 
relative contributions of rotational and translational kinetic energy. 

Procedure: 1. Measure the masses of the cart, solid sphere, and hollow cylinder. 

 mcart = _______ [kg] msphere = _______ [kg]     mcylinder = _______ [kg] 
   
 2. Record again the value you determined for sin θ in Activity 1, where θ is the 

inclination angle of the experimental setup you measured previously in 
Activity 1 (see Figure 9). 

     sin θ = _________ 

θ

 motion 
detector 

0.5 m

 solid 
sphere

  fixed 
 incline

8

 
Figure 9.  Experimental setup for Activity 5 
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Predictions: •If you held a race down the incline between the cart, the solid sphere, and the 
 hollow cylinder, in what order would these objects finish the race? 

 ___________________________________________________________ 

 •Assuming that the origin is located at the motion detector as shown in 
 Figure 10, and assuming the masses of all the objects are the same, sketch in 
 Figure 11 your predictions for the gravitational potential energy, P.E._grav, 
 the rotational kinetic energy, K.E._rot, the translational kinetic energy, 
 K.E._trans, and the total energy, T.E., for each of the following objects 
 traveling down an incline of angle θ:  (a) [solid line] a cart that slides without 
 friction (ignore any contribution due to the small wheels); (b) [dashed line] a 
 solid sphere that rolls without slipping; and (c) [dotted line] a hollow cylinder 
 that rolls without slipping.  Be sure to emphasize any differences or 
 similarities you expect to observe. 

 
θ

These angles 
are the same

d h
height h=0

height h is negative
down here

θ

 
 Figure 10.  Experimental parameters for an object sliding or rolling down an incline 

 
 Figure 11.  Predictions for potential, rotational kinetic, translational kinetic, and total energies 
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Predictions:  How would you determine the velocity of a rolling object after it has rolled a 
(continued)  distance ∆d = d2-d1 = 1 meter down the incline from a stationary initial 

position?  
  The following facts apply: 
   (1)  Energy is conserved, Einit = Efinal. 

                 Einit              Efinal  

    - mgd1sinθ  =     - mgd2sinθ +1/2mv2 +1/2Iω2 (Eq. 6) 
    
   where I = ηmR2 is the moment of inertia of the object, η is the constant 

  prefactor determined by the object’s 
shape (η=0.4 and 1 for a solid  sphere and hollow cylinder, respectively), 
v is the translational velocity  of the object, ω is the angular velocity of 
the object, and d1 and d2 are the  initial and final distances of the object 
from the origin. 

  (2) The rolling objects roll without slipping, 

  ω = v/R (Eq. 7) 

  Combining these two relationships and solving for the velocity v gives a 
relationship that depends only on the known parameters m, g, η, θ, and ∆d (= 
d2-d1) (make sure you know how to derive this!), 

  
v = 2g(d2-d1)sinθ

1+η
 =   2g∆dsinθ 

1+η
 
 

(Eq. 8)

 

 •If a cart,  a solid sphere, and a hollow cylinder are released at the top of 
 the incline illustrated in Figure 9, what do you predict will be the velocity of 
 each of the objects when they have traveled a distance of ∆d = 1 meter?  
 Record your predictions in Table 6. 

  It is also interesting to consider the fraction of total kinetic energy associated 
with rotational motion, K.E.rot/(K.E.trans+K.E.rot), for different objects rolling down 
an incline.  Using the relationships  K.E.trans = 1/2mv2,  K.E.rot = 1/2Iω2  = 
1/2ηmR2ω2 =  1/2ηmv2, and Equation 7, one finds 

  

K.E.rot
K.E.total

  =  K.E.rot
K.E.rot + K.E.trans

  =  
1/ 2ηmR2ω2

1/ 2ηmR2ω2 + 1/ 2mv2
  =   

η
η + 1

 

(Eq. 9)

 

 •For each of the three objects described above, record in Table 6 the value 
η/(η+1), which is associated with the ratio of the rotational kinetic energy to the 
total kinetic energy, K.E.rot/(K.E.trans+K.E.rot). 
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Object 

Predicted 
velocity 

after ∆d=1 m 

Measured 
velocity 

after ∆d=1 m

 
% 

Difference

 
η/(η+1) 

 

Measured 
K.E. rot/ K.E. 

total 

cart      

solid 
sphere      

hollow 
cylinder      

   Table 6.  Predictions and results for Activity 4 
 
 
Procedure:  3.  Prepare to test your predictions.  First, configure the MacMotion graph. 
(continued) 
 •  Open the file Rolling in the Lab 6 folder. A graph like that shown in 

Figure 12 should appear. 

 
  Figure 12.  Experimental setup for Activity 4 

 
  4. Modify the total energy formula for the cart. 
  • Select Modify... under the Data menu, then select Total Energy. 
  • Replace the “0” in the “formula” space with the expected relationship for 

the cart’s total energy,  

     “P.E._grav” + “K.E._rot” + “K.E._trans” 

   Click on OK when you’re satisfied with your answer. 
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Procedure:  5. Modify the translational kinetic energy formula for the cart. 
(continued) 
  • Under the Data menu, first select Modify..., then select Translational 

Kinetic.... 
 • Replace the “0” in the “formula” space with the relationship for the cart’s 

kinetic energy, 
     0.5 * (mass of cart) * “vel” ^ 2 
  where (mass of cart) is the measured mass of the cart in kg.  Click OK. 
   
  6. Modify the gravitational potential energy formula. 
  • Under the Data menu, first select Modify..., then select Gravitational 

Potential.... 
  • Replace the “0” in the “formula” space with the expected relationship for 

the cart’s gravitational potential energy (watch your signs!). 

    P.E.grav =  - (mass of cart) * 9.81 * “dist” * (value for sin θ) 

   where you will need to include the value of sin θ you measured earlier. 
 
  7. Modify (if necessary) the rotational kinetic energy formula for the cart. 
  • Select Modify... under the Data menu, then select Rotational 

Kinetic.... 
  • Replace the “0” in the “formula” space with the expected relationship for 

the cart’s rotational kinetic energy (K.E.rot =1/2ηmv2). Click on OK. 
 
  8. Make sure your graphs appear as illustrated in Figure 12. 
 
  9. Test your predictions.  First, measure the cart as it rolls down the incline. 
  • Hold the cart stationary about 0.5 meters from the motion detector.  

Click Start, then release the cart. 
   
  10.  Analyze your results. 
  • Select Analyze Data A... under the Analyze menu. 
  • Measure the velocity of the cart after it traveled as close as possible to 

a distance ∆d=1 meter from its initial position.  You can do this without 
pulling up the velocity graph by looking at the velocity value at the 
bottom of the display at the appropriate time.  Record your measured 
velocity in Table 6, and compute the percent difference between your 
measured and predicted values. 

  • Use your results to determine the fraction of total kinetic energy 
associated with rotational kinetic energy for this experiment, and record 
in Table 6.  Verify that this ratio equals the quantity η/(η+1). 
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Procedure:  11. Repeat steps 5 - 10 above for the case of a solid sphere rolling down 
(continued)    the incline. 
  • When you Modify the formulas for this experiment, make sure you use 

the correct mass. 
  • Make sure you Modify the rotational kinetic energy formula to include 

the relationship appropriate for this situation (write the formula in terms 
of the velocity, “vel”).  Write this rotational kinetic energy equation 
below. 

 
       K.E.rot = ______________ 

  • Analyze your data as described in step 10, and record your results in 
Table 6. 

 

Questions: •What did you notice about the velocity of the sphere after rolling ∆d = 1 meter 
 compared to that of the cart after rolling the same distance?  Did you predict 
 this?   

 ___________________________________________________________ 
 ___________________________________________________________ 

 •Based on your observations of the cart and the sphere, will an object with a 
 larger value of K.E.rot/ K.E.total have a larger or smaller acceleration down the 
 incline than an object with a smaller value of K.E.rot/ K.E.total?  Explain. 

 ___________________________________________________________ 
 ___________________________________________________________ 
   
   
   
 12. Repeat steps 5 - 10 above for the case of a hollow cylinder rolling down 

 the incline. 
  • When you Modify the formulas for this experiment, make sure you use 

the correct mass. 
  • Make sure you Modify the rotational kinetic energy formula to include 

the relationship appropriate for this situation.  Write this rotational 
kinetic energy equation below. 

 
       K.E.rot = ______________ 

  • Analyze your data as described in step 10, and record your results in 
Table 6. 
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Questions: •Provide an explanation for the order in which a cart, a solid sphere, and a 
 hollow cylinder would finish a race down an incline in terms of the different 
 rotational and translational kinetic energies of the objects. 

 ___________________________________________________________ 
  ___________________________________________________________ 
  ___________________________________________________________ 

 •Is energy conserved in all cases?  Did you expect this?  Why or why not? 

 ___________________________________________________________ 
  ___________________________________________________________ 
 


