Kinematics

$\mathbf{v}=\mathbf{v}_{0}+\mathbf{a t}$
$\mathbf{r}=\mathbf{r}_{0}+\mathbf{v}_{0} \mathrm{t}+\mathrm{at}^{2} / 2$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}=32.2 \mathrm{ft} / \mathrm{s}^{2}$
Uniform Circular Motion
$\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}=\omega^{2} \mathrm{r}$
$\mathrm{v}=\omega \mathrm{r}$
$\omega=2 \pi / \mathrm{T}=2 \pi \mathrm{f}$

Dynamics

$\mathbf{F}_{\text {net }}=\mathrm{ma}=\mathrm{d} \mathbf{p} / \mathrm{dt}$
$\mathbf{F}_{\mathrm{A}, \mathrm{B}}=-\mathbf{F}_{\mathrm{B}, \mathrm{A}}$
$\mathrm{F}=\mathrm{mg}$ (near earth's surface)
$F_{12}=-\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$ (in general)
(where $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$)
$\mathrm{F}_{\text {spring }}=-\mathrm{kx}$

Friction

$\mathrm{f}=\mu_{\mathrm{k}} \mathrm{N}$ (kinetic)
$\mathrm{f} \leq \mu_{\mathrm{S}} \mathrm{N}$ (static)

Work \& Kinetic energy

$\mathrm{W}=\int \mathbf{F} \cdot \mathbf{d s}$
$\mathrm{W}=\mathbf{F} \cdot \mathbf{S}=\mathrm{FS} \cos \theta$
(constant force)
$\mathrm{W}_{\text {grav }}=-\mathrm{mg} \Delta \mathrm{y}$
$\mathrm{W}_{\text {spring }}=-\mathrm{k}\left(\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}\right) / 2$
$\mathrm{K}=\mathrm{mv}^{2} / 2=\mathrm{p}^{2} / 2 \mathrm{~m}$
$\mathrm{W}_{\mathrm{NET}}=\Delta \mathrm{K}$

Potential Energy

$\mathrm{U}_{\mathrm{grav}}=\mathrm{mgy}$ (near earth surface)
$\mathrm{U}_{\text {grav }}=-\mathrm{GMm} / \mathrm{r}$ (in general)
$\mathrm{U}_{\text {spring }}=\mathrm{kx}^{2} / 2$
$\Delta \mathrm{E}=\Delta \mathrm{K}+\Delta \mathrm{U}=\mathrm{W}_{\mathrm{nc}}$

Power

P = dW/dt
$\mathrm{P}=\mathbf{F} \cdot \mathbf{v}$ (for constant force)

System of Particles

$\mathbf{R}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}_{\mathrm{i}}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{V}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{A}_{\mathrm{CM}}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{a}_{\mathrm{i}} / \Sigma \mathrm{m}_{\mathrm{i}}$
$\mathbf{P}=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}$
$\Sigma \mathbf{F}_{\mathrm{EXT}}=\mathrm{MA} \mathbf{A}_{\mathrm{CM}}=\mathrm{d} \mathbf{P} / \mathrm{dt}$

Impulse

$\mathbf{I}=\int \mathbf{F} d t$
$\Delta \mathbf{P}=\mathbf{F}_{\mathrm{av}} \Delta \mathrm{t}$

Collisions:

If $\Sigma \mathbf{F}_{\text {EXT }}=0$ in some direction, then
$\mathbf{P}_{\text {before }}=\mathbf{P}_{\text {after }}$ in this direction:
$\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}$ (before) $=\Sigma \mathrm{m}_{\mathrm{i}} \mathbf{v}_{\mathrm{i}}($ after $)$
In addition, if the collision is elastic:

* $\mathrm{E}_{\text {before }}=\mathrm{E}_{\text {after }}$
* Rate of approach $=$ Rate of recession
* The speed of an object in the Center-of-Mass reference frame is unchanged by an elastic collision.

Rotational kinematics

$\left.\begin{array}{l}\mathrm{s}=\mathrm{R} \theta, \mathrm{v}=\mathrm{R} \omega, \mathrm{a}=\mathrm{R} \alpha \\ \theta=\theta_{0}+\omega_{0} \mathrm{t}+\frac{1}{2} \alpha \mathrm{t}^{2} \\ \omega=\omega_{0}+\alpha \mathrm{t} \\ \omega^{2}=\omega_{0}{ }^{2}+2 \alpha \Delta \theta\end{array}\right\} \begin{gathered} \\ \text { For } \\ \text { Constant } \\ \alpha\end{gathered}$

Rotational Dynamics

$\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$
$\mathrm{I}_{\text {parallel }}=\mathrm{I}_{\mathrm{CM}}+\mathrm{MD}^{2}$
$\mathrm{I}_{\text {disk }}=\mathrm{I}_{\text {cylinder }}={ }^{1} / \mathrm{MR}^{2}$
$\mathrm{I}_{\text {hoop }}=\mathrm{MR}^{2}$
$\mathrm{I}_{\text {solid-sphere }}={ }^{2} / 5 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {spherical shell }}=2 / 3 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {rod-cm }}={ }^{1} /{ }_{12} \mathrm{ML}^{2}$
$\mathrm{I}_{\text {rod-end }}=1 / 3 \mathrm{ML}^{2}$
$\tau=\mathrm{I} \alpha$ (rotation about a fixed axis)
$\tau=\mathbf{r} \times \mathbf{F},|\tau|=\mathrm{rFsin} \phi$

Work \& Energy

$\mathrm{K}_{\text {rotation }}={ }^{1} / 2 \mathrm{I} \omega^{2}$,
$\mathrm{K}_{\text {translation }}={ }^{1} /{ }_{2} \mathrm{MV}_{\mathrm{cm}}{ }^{2}$
$\mathrm{K}_{\text {total }}=\mathrm{K}_{\text {rotation }}+\mathrm{K}_{\text {translation }}$
$\mathrm{W}=\tau \theta$

Statics

$\Sigma \mathbf{F}=0, \Sigma \tau=0$ (about any axis)

Angular Momentum:

$$
\begin{aligned}
& \mathbf{L}=\mathbf{r} \times \mathbf{p} \\
& \mathrm{L}_{\mathrm{z}}=\mathrm{I} \omega_{\mathrm{z}} \\
& \mathbf{L}_{\text {tot }}=\mathbf{L}_{\mathrm{CM}}+\mathbf{L}^{*} \\
& \tau_{\text {ext }}=\mathrm{d} \mathbf{L} / \mathrm{dt} \\
& \tau_{\mathrm{cm}}=\mathrm{d} \mathbf{L}^{*} / \mathrm{dt} \\
& \Omega_{\text {precession }}=\tau / \mathrm{L}
\end{aligned}
$$

Simple Harmonic Motion:
$\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}=-\omega^{2} \mathrm{x}$
(differential equation for SHM)
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\phi)$
$\mathrm{v}(\mathrm{t})=-\omega \mathrm{A} \sin (\omega \mathrm{t}+\phi)$
$a(t)=-\omega^{2} A \cos (\omega t+\phi)$
$\omega^{2}=\mathrm{k} / \mathrm{m}$ (mass on spring)
$\omega^{2}=\mathrm{g} / \mathrm{L}$ (simple pendulum)
$\omega^{2}=\mathrm{mgR}_{\mathrm{CM}} / \mathrm{I}$ (physical
pendulum)
$\omega^{2}=\kappa / \mathrm{I}$ (torsion pendulum)
General harmonic transverse waves:
$\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{A} \cos (\mathrm{kx}-\omega \mathrm{t})$
$\mathrm{k}=2 \pi / \lambda, \quad \omega=2 \pi \mathrm{f}=2 \pi / \mathrm{T}$
$\mathrm{v}=\lambda \mathrm{f}=\omega / \mathrm{k}$

Waves on a string:

$\mathrm{v}^{2}=\frac{\mathrm{F}}{\mu}=\frac{(\text { tension })}{(\text { mass per unit length })}$
$\overline{\mathrm{P}}=\frac{1}{2} \mu \nu \omega^{2} \mathrm{~A}^{2}$
$\frac{\mathrm{d} \overline{\mathrm{E}}}{\mathrm{dx}}=\frac{1}{2} \mu \omega^{2} \mathrm{~A}^{2}$
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}=\frac{1}{\mathrm{v}^{2}} \frac{\mathrm{~d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}$ Wave
Equation

Fluids:

$$
\rho=\frac{\Delta m}{\Delta V} \quad p=\frac{\Delta F}{\Delta A}
$$

$B=\frac{\Delta p}{(-\Delta V / V)}$ Bulk
modulus

$$
\begin{aligned}
& p_{2}=p_{1}+\rho g\left(y_{2}-y_{1}\right) \\
& F_{B}=\rho_{\text {liquid }} g V_{\text {liquid }} \\
& F_{2}=F_{1} \frac{A_{2}}{A_{1}}
\end{aligned}
$$

