
Course Overview 
  The framework we will adopt in this course will be that introduced by Isaac 
Newton in the 17th century.  This framework remained the standard in science until the 
20th century when fundamental changes were needed to describe the complete nature of 
space, time, and matter.   In particular, the theory of special relativity proposed a constant 
speed of light that led to a reformulation of the nature of space and time.  The theory of 
quantum mechanics was created to describe the interactions of elementary particles, such 
as electrons and photons, leading to a description of matter that included both particle and 
wavelike aspects.  In this course, we will restrict ourselves to describing macroscopic 
objects moving at relative velocities that are small with respect to the speed of light, so 
that Newtonian mechanics is all we need to accurately describe the physics. 
 
 In particular, we will present Newton’s laws which introduce the new concepts of 
force and mass that are needed to describe the actions of macroscopic objects.  Indeed, 
Newton’s laws establish the mechanical world view that forms the basis for the scientific 
revolution of the 17th century.  In particular, he introduced a universal force of gravitation 
that he claimed applied to all objects having mass.  He then demonstrated that he could 
relate the motion of the Moon in its orbit about the Earth to the falling of an apple to the 
ground here on Earth.  The deep significance of this demonstration was that, for the first 
time, a connection was made between the motions of ordinary things on the Earth and the 
motions of heavenly bodies.  Prior to Newton, the Heavens and the Earth were treated 
entirely separately and differently.  Newton showed that the laws that apply here on Earth 
extend to the Heavens.    
 
 We will then introduce other important quantities such as energy, momentum and 
angular momentum that are commonly conserved in a variety of situations.  We’ll close 
with a brief study of oscillatory motions, wave motions, and fluids. 
 

1.  One Dimensional Kinematics 
 
A) Overview 
  This course is concerned with classical mechanics, the study of the forces and 
motions of macroscopic objects.  We will begin with a study of kinematics, the 
description of motion, without regard to its cause.  In particular, we will define the 
concepts of displacement, velocity and acceleration that are needed to describe motion.  
We will initially restrict ourselves to motions in one dimension.  We will use these 
definitions to demonstrate how to obtain the change in position from the velocity and the 
change in velocity from the acceleration.  We will close this unit with a discussion of an 
example of a particular motion, that of constant acceleration. 
 



B) Displacement and Average Velocity 
 To discuss motion in classical physics, we begin with two quantities, 
displacement and velocity.  These quantities are not unfamiliar to you; I’m sure you 
already have a working knowledge of the relationship between displacement and 
velocity. If it takes you three hours to walk six miles you can figure out that your average 
velocity during that walk was 2 miles/hr by simply dividing the distance you walked by 
the time it took.  
 
 In this course, you will find that many of the words that represent the quantities of 
physics will be very familiar words.   It is important to note, however, that these words all 
have very precise meanings in physics, whereas in everyday language, these words are 
often used to mean many related, but different, things.   Therefore, it is important that we 
start right away with careful definitions of our terms.  Most often, these definitions will 
obtain their precision through their expression in terms of mathematics.  
 
 To illustrate this point, we introduce an arguments made by the Greek philosopher 
Zeno to prove that it is impossible to move from some point A to another point B.  His 
argument goes as follows:  clearly before we can move to point B, we need first to move 
to point C which is halfway between points A and B. Sounds true enough, however, this 
argument can be repeated ad infinitum.  i.e., once at C, we would need to move first to 
point D which is halfway between points C and B.  You get the drift, I’m sure.  We will 
need to make an infinite number of moves to get to point B. 

. 
 What is Zeno’s point?  It certainly is not to prove that motion is impossible; we all 
know that is not true.  In fact, the reason that these arguments are called “paradoxes” is 
that what seems to be a reasonable argument leads to a conclusion that we know is false.  
Zeno initiated these arguments as ways to investigate the nature of space and time.  
 
 How do we resolve these paradoxes?  Clearly the problem lies with the notion of 
infinity.  Mathematics can help us.  We know, for example, that an infinite series can 
have a well-defined sum.  This sum is defined in terms of a limit which is the key concept 
of calculus.   Indeed, we will soon find that the use of calculus will be central to the 
definition of velocity.  For now, though, we’ll begin by defining the average velocity of 
an object within some time interval ∆t to be equal to ∆x, the distance it has travelled 
during that period divided by the time it takes. 
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 We can represent this definition graphically as shown in Figure 1.1.  On the 
vertical axis we plot the displacement x, which is defined to be the distance travelled 
from some fixed origin, while on the horizontal axis, we plot the time t, from some fixed 
time defined to be t = 0.  If we choose some time interval defined by the times ti and tf, 
we see the corresponding displacements xi and xf and that the average velocity is just the 
slope of the line connecting the initial and final points on the graph.  

  
 

 



 To illustrate the use of the 
average velocity, suppose someone 
calls your cell phone while you are 
driving and asks “what’s up?”.   You 
might say “I left town half an hour 
ago and I’m heading east on the 
interstate”.  If you wanted to be 
more specific you might say “I am 
35 miles east of town and I’m 
driving east at an average speed of 
65 miles per hour.” From this 
information your friend could do a 
simple mental calculation to predict 
that one hour from now you will be 
another 65 miles farther east, which 
would be about a hundred miles east 
of town.  
  
 What your friend really did to make this estimate was to solve the following 
kinematic equation in her head.   
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The translation of this equation into English is that your position at a time ∆t after you 
start is just equal to your starting position, call it xo, plus the additional distance you went 
during time ∆t. This last piece is just your average velocity multiplied by the elapsed 
time.   This last calculation assumes that your average velocity does not change in the 
next hour.  We will discuss how to describe motion in which your velocity does change 
in the next section 
 
 Before we proceed any further, a remark about units is in order.  Although the 
velocity used in this example was given in miles per hour, we will adopt for the most part 
in this course, the SI system of units in which velocity is measured in meters/second.  
Converting between these units is easy; we simply have to multiply by “one” until the 
units are right.  For example in this case, we can multiply 65 miles/hour by 1609 
meters/mile by (1/3600) hours/second to obtain the result that 65 mph is equivalent to 29 
m/s. 
 
C) Instantaneous Velocity  
 In the last example, we calculated the predicted distance the car would go during 
a specified period of time, assuming that the average velocity during that time did not 
change.  You know this assumption is not always true; sometimes you may speed up to 
pass a car, resulting in an increased average velocity or you may have to slow down due 
to traffic, resulting in a decreased average velocity.    
 
 Therefore, to discuss all kinds of motion, we will need the ability to figure out 
both the displacement and the velocity for any instant in time, not just the average over 
some time interval.  

Figure 1.1
A plot of the displacement x as a function of time t.  
The average velocity for a time interval(ti, tf)  is 
illustrated as the slope of the line connecting the 
points on the curve at those two times.



 
 We can visualize the procedure for finding 
the instantaneous velocity by starting with the 
displacement vs time plot shown in Figure 1.1 
and then bringing the final and initial times closer 
and closer together until they are infinitesimally 
close together.  As we do this the line connecting 
the points becomes the tangent to the curve as 
shown in Figure 1.2!  In other words, the 
instantaneous velocity at some time t is just the 
slope of the tangent to the x vs t curve at that 
point.  The slope of this tangent line is exactly 
equal to the derivative dx/dt at that time!  

 
 We can now see the simple relationship 
between displacement and velocity: The 
instantaneous velocity at a particular time t is 
defined to be the time derivative of the 
displacement at that time.   
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We can construct a graph of the instantaneous velocity as a function of time by finding 
the slope of the corresponding x vs t graph at each time t as shown in Figure 1.3.    

 
 This relationship is always true, no-matter how strangely the displacement may be 
changing with time. This relationship is the definition of instantaneous velocity.  We 
were led to this definition of the instantaneous velocity by a natural refinement of the 
concept of the average velocity and we have discovered, as predicted, that the calculus (in 
this case, the derivative) is needed to carefully define this kinematic quantity. 
 
 

Figure 1.2
A plot of the displacement x as a function of time t.  
The instantaneous velocity at time t is illustrated 
as the slope of the tangent to the curve at timet.

Figure 1.3
The instantaneous velocity at any time is obtained by differentiating the displacement at that time.



D) Position from Velocity  
 We’ve just defined the instantaneous velocity at time t as the time derivative of 
the displacement at time t.  Therefore, if we know the displacement as a function of time 
for some object, we can calculate its velocity at any time by simply evaluating the 
derivative of the displacement function at that time.   
 
 Suppose, on the other hand, that we know the velocity as a function of time; what 
can we say then about the displacement at any time?  It seems like we should be able to 
use the inverse operation to go the other way – that we should be able to evaluate the 
integral of the v vs t graph to find the displacement as a function of time.  
 
 We know the integral can be represented graphically as the area under the curve.  
Therefore, we expect the displacement to be related to the area under the v vs t graph.  
We can verify this expectation for the special case of motion with a constant velocity as 
shown in Figure 1.4.  In this case the area under the curve from 0 to time t is simply equal 
to the magnitude of the velocity times the time t.   Note that the integral needed to find 
the displacement at time t is the definite integral from t =0 to t = t. 

 
 To obtain the general equation that determines the displacement from the velocity, 
we actually need to be a little more careful. What we’ve really shown so far is that the 
change in displacement during a time interval (for example, ti to tf) is equal to the integral 
of the velocity between these initial and final times.  We have no way of knowing where 
the particle was at any particular time, say at t = 0.  The velocity tells us how the 
displacement changes; it can’t tell us where it started from.  That information must be 
given to us independently.  Consequently, we write the general expression in terms of the 
definite integral of the velocity from ti to tf and the value of the velocity at ti.   
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This expression is completely general and will work for any velocity function  

Figure 1.4
For motion at constant velocity, the displacement as a functin of time can be obtained by integrating the 
constant velocity over time to obtain a displacement that changes linearly with time..    



 
E) Acceleration  
 There is one more important kinematic quantity that we need to discuss.  Namely, 
just as velocity tells us how fast the displacement is changing, acceleration tells us how 
fast the velocity is changing. In other words, acceleration is the time rate of change of 
velocity; acceleration is the measure of how many meters per second the velocity changes 
in a second. The units of acceleration are therefore meters per second per second.  
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Figure 1.5 shows a plot of the velocity of an object as a function of time.  The value of 
the acceleration at any given time is just equal to the slope of this curve at that time.  

 
 In the same way that the change in displacement can be found by integrating the 
velocity, the change in velocity can be found by integrating the acceleration.  
 
 Before going any further, we must issue here a warning about a common 
confusion between everyday language and precise kinematic definitions.  The evil word 
here is deceleration.  I’m sure practically all of you associate decelerating with “slowing 
down”.   We have just defined acceleration as the time rate of change of velocity.  The 
velocity is a signed number as is the acceleration.  The sign of the velocity indicates its 
direction (either forwards (positive) or backwards (negative)).  If a car is moving in the 
positive direction and slowing down, then its acceleration is negative.  However, if the 
car is moving in the negative direction and slowing down, then its acceleration is 
positive!  Therefore, the concept of “slowing down” is not the same as that of “negative 
acceleration”. The safest way to proceed here is to just not use the word deceleration 
when dealing with kinematics problems.  Accelerations are either positive or negative, 
depending on whether the velocity, a signed number, is increasing or decreasing. 
 

Figure 1.5
The acceleration of an object at any time is obtained by differentiating its velocity at that time.



F) Constant Acceleration  
 The equations we presented in the last section for the acceleration as the time rate 
of change of the velocity and the change in velocity as the integral of the acceleration are 
totally general; they are true always! 
 
 We’d like now to use these general equations to derive the specific equations that 
hold for a special, but important case, namely that of motion at constant acceleration.   
We start with the defining property, that the acceleration is a constant.  We can integrate 
this constant acceleration to find the change in velocity.  The result of this integration is 
that the velocity at any given time is simply equal to the initial velocity plus the 
acceleration multiplied by the elapsed time.   
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This equation is often written in a more compact form.   
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In writing this equation, we denote the velocity at the initial time by vo, and the variable t 
really means the elapsed time tf – ti. We see that the velocity changes linearly with time, 
as it must since the acceleration is constant.  
 
 Now that we have the velocity as a function of time, we can integrate once again 
to find the displacement as a function of time.  
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In this case we see that the displacement changes quadratically with time. 
2
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We have now obtained expressions for the velocity and displacement as a function of 
time for the special case of motion at constant acceleration.  We can eliminate the time 
from these equations, for example by solving for t in the velocity equation and 
substituting that expression back into the displacement equation to obtain a new 
expression that directly relates the velocity to the displacement.   
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In particular, we see that the displacement increases as the square of the velocity.   



  
 
 
 

 


