
2.  Two Dimensional Kinematics 
 
A) Overview 
  We will begin by introducing the concept of vectors that will allow us to 
generalize what we learned last time in one dimension to two and three dimensions.  In 
particular, we will define vector addition and subtraction and relate the component 
representation of a vector to the magnitude and direction representation. 
   
 We will then introduce one physics example, namely the description of free fall 
near the surface of the earth as motion of constant acceleration in the vertical direction 
and motion at constant velocity in the horizontal direction.  We will use these 
descriptions to calculate some properties of projectile motion.   Finally, we will use the 
principle of superposition to relate the descriptions of projectile motion in two different 
reference frames. 
 
B) Kinematic Definitions in Three Dimensions 
  To this point, we have restricted ourselves to discussions of motions in one-
dimension; we have defined velocity as dx/dt and acceleration as dv/dt.  How do we 
generalize these definitions to more than one dimension?  The generalization we make is 
most easily understood in terms of Cartesian co-ordinates.  Figure 2.1a shows a Cartesian 
coordinate system, with the mutually orthogonal directions labeled x, y, and z.  To 

identify a point P in this space, we can specify its three co-ordinates (x,y,z).  These co- 
ordinates represent how far the point is from the origin in the x, y, and z directions.  If we 
draw an arrow from the origin to the point, as shown in Figure 2.1b, we can define this 
arrow as the displacement vector that locates the point; the coordinates (x,y,z) are called 
the components of the displacement vector in this system.  With this definition of the 
displacement vector, it is natural to define the components of the velocity vector and the 
acceleration vector similarly. 
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Figure 2.1a
A point P is specified in a Cartesian co-ordinate 
system by its components (x, y, z).

Figure 2.1b
A point P is specified by its displacement vector r
whose Cartesian coordinates are (x, y, z)



 With these definitions, we can see that everything we did last time for one 
dimension (x) is just repeated for the other two dimensions (y and z).  For example, we 
can immediately write down the equations for all components for motion at constant 
acceleration.   
            tavv xoxx +=                         tavv yoyy +=                      tavv zozz +=  

             2
2
1 tatvxx xoxo ++=            2

2
1 tatvyy yoyo ++=          2

2
1 tatvzz zozo ++=  

We can formalize this generalization from one dimension to three dimensions by defining 
these kinematic quantities, displacement, velocity and acceleration as vector quantities.  
For example, we can write down a single equation for the velocity vector as a function of 
time for the special case of constant acceleration.   

tavv o
��� +=  

The “arrow” notation is apt here since it indicates that, like an arrow, a vector has both a 
length and a direction.  The length of a vector is also called its magnitude and is often 
represented as the absolute value of the vector. This single vector equation is equivalent 
to the three scalar equations we wrote down earlier..  
            tavv xoxx +=                         tavv yoyy +=                      tavv zozz +=  

We have introduced these vectors in terms of one representation, their Cartesian 
components.  In fact, you should think of these vectors as the primary object.  They can 
have several different scalar component representations.  In the next section, we will 
support this claim by introducing some important properties of vectors that we will use 
often in this course. 
 
C) Vectors 
 You know how to perform many operations on scalar quantities.  For example, 
you know how to add, subtract, multiply and divide numbers.  You also know how to 
differentiate and integrate scalar functions. We can define similar operations for vectors.   
 
 For example, Figure 2.2 shows 
the procedure for defining the sum of 
two vectors A and B.  Namely, ths sum 
is defined to be another vector C which 
is obtained from A and B using the 
following prescription:  place the tail of 
vector B at the head of vector A and then 
draw the arrow from the tail of vector A 
to the head of vector B.  Note that the 
vector sum depends on the directions of 
the vectors as well as their magnitudes.  
For example, if you were to rotate vector 
B through some angle, its magnitude 
would not change, but both the direction 
and the magnitude of the vector sum C 
will change! Clearly the magnitude of 

Figure 2.2
The sum of two vectors A and B is defined 
to be another vector C formed by placing the 
tail of B at the head of A and drawing a 
vector from the tail of A to the head of B.



the vector sum C is not equal to the sum of the magnitudes of vectors A and B. 
  
 You must be thinking that this is a pretty strange prescription to be given the 
name of something simple like addition.  This prescription becomes more clear if we look 
at the Cartesian components of the vectors as shown in Figure 2.3.   

 
Aha, there is a method to this madness!  It’s clear that this definition of vector addition 
gives the result that the Cartesian components simply add! 
                          xxx BAC +=                yyy BAC +=  

With this definition of vector addition, we see we can also write a general expression of 
any vector A in terms of its 
Cartesian components and the unit 

vectors )ˆ,ˆ,ˆ( kji in the (x, y, z) 
directions, as shown in Figure 2.4.  
Here we have used the fact that 
multiplying a vector by a scalar is 
the same as multiplying each of its 
components by the same scalar, 
which simply changes its length. 
Multiplying a vector by a negative 
scalar reverses its direction. 
 . 
 

Figure 2.3
The components of the vector sum C are equal to the sum of the components 
of the vectors A and B.

Figure 2.4
The vector A represented as the vector sum of the product 
of its components and the corresponding unit vector.     



 The Cartesian component representation of a vector is a common representation, 
but certainly not the only one.  For example, a vector can also be specified in spherical 
components, in which the length of the vector and the angles describing its orientation are 
used to specify the vector as in Figure 2.5a.  In two dimensions, the orientation of a 

vector can be specified by the angle θ it makes with the x-axis as shown in Figure 2.5b..  
Using trigonometry, we can determine completely the relation between the Cartesian 
components (Ax, Ay) and the polar components (A, θ).   
 
 In all cases, though, you should think of the vector itself as an object – the arrow. 
The different coordinate systems we invent are just different ways of describing this 
object in terms of scalar quantities. 
 
D) Example:  Free Fall (gravity) 
 We will now return to do some physics by considering an example of motion in 
three dimensions with constant acceleration, namely the throwing of a ball across a room.  
Once the ball leaves our hand the only force acting on it is gravity. We will learn more 
about gravity in a few units – for now the only thing we need to know is that, near the 
surface of the earth, any object under the influence of just gravity (i.e., in free fall) will 
experience the same downward acceleration: of 9.8 m/s2.  It is customary to refer to the 
magnitude of the acceleration of gravity as g. 
 
Figure 2.6 shows the familiar parabolic trajectory followed by the ball once it is in the air.  

Figure 2.5a
The representation of a 3-dimensional 
vector A in spherical coordinates

Figure 2.5b
The representation of a 2-dimensional 
vector A in polar coordinates

Figure 2.6
The parabolic trajectory followed by a thrown ball



Before attempting to describe this motion using our new 3D kinematics equations we 
need to define our coordinate system. It is customary to pick the y axis to point vertically 
upward and the x axis to point horizontally in the direction of the throw. With this choice, 
our kinematics equations simplify considerably as shown in Figure 2.7. Since the  

acceleration is only in the –y direction, ax and az are zero. Therefore, the velocities in the 
x and z directions cannot change; the motion in these directions is just motion at constant 
velocity. Since we chose v0z to be zero, we have no motion along the z direction at all. 
The motion of the ball will be restricted to the x-y plane; we have reduced the problem to 
a two-dimensional problem. Indeed, we might as well choose the initial z position (z0) to 
be zero which results in these simplified equations.   
 0=xa     oxx vv =   tvxx oxo +=  

 ga y −=  gtvv oyy −=   2
2
1 gttvyy oyo −+=   

Before we use these equations in a calculation, let’s first make a few observations. First, 
note that there are minus signs in all equations where g appears. The explanation is 
simply that the acceleration due to gravity is downward, in the –y direction, and we 
always take the value of g itself to be positive since g represents the magnitude of the 
acceleration, which we know to be 9.8 m/s2. Second, note that the x component of the 
velocity is constant – it never changes from is initial value. Last, but not least, note again 
that the equations for the x and y components of the motion are totally independent – 
neither one cares about the other. We will see soon that this independence has important 
implications. 
 

Figure 2.7
The kinematic equations for a ball thrown across the room.



E) Example: Soccer Ball Kick  
 We will now use our knowledge of the motion of an object in free fall near the 
surface of the earth to make a calculation.  Suppose you kick a ball off the ground at an 
angle θ with an initial speed v0. How far away will it land? 
 
 The equations we developed in the last section already reflect the fact that we 
have chosen the y axis to be up and the x axis to be in the direction of the kick. To make 
things even simpler, lets kick the ball at t=0 and choose the origin of our coordinate 
system to be at the initial position of the ball so that x0 = y0 = 0.  We now have equations 
for all three quantities that change as a function of time (x, y, and vy).    

 tvx ox=  2
2
1 gttvy oy −=  gtvv oyy −=  

We want to determine the horizontal distance the ball travels before hitting the ground, 
call it D. Suppose the ball hits the ground at time t = tf. The distance D then is really just 
the x position of the ball at time t = tf.  Therefore, we use the x-equation to tell us that D is 
just equal to the product of the time tf and the v0x, the x-component of the initial velocity. 
   foxtvx =  

Therefore to determine D, we must first determine tf and v0x.  How do we do that? 
 
 We can certainly determine v0x from trigonometry.  
Namely, all we have to do is to decompose the initial velocity 
vector into its Cartesian components as shown in Figure 2.8.  
Since these components form the sides of a right triangle whose 
hypotenuse is equal to v0, the magnitude of the initial velocity, 
we see that:   
 θcosoox vv =   θsinooy vv =  

Since both v0 and θ are given in the problem statement, we now 
know both v0x and v0y as well.  The only remaining task is to 
determine tf, the time the ball stays in the air.  Since we have an 
equation for y as a function of t we can just solve this equation 
for the times at which y = 0.  

  2
2
10 ffoy gttv −=  

Since this is a quadratic equation, we will find two solutions: 

  0=ft   
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These are the times at which the height of the ball was zero: one is when the ball was 
kicked (tf = 0), and the other is when the ball landed (tf = 2v0y/g). 
 
 Finally, we just plug this last value for tf in our equation to determine that the 
distance the ball travels in the air is proportional to the product of the x and y components 
of the initial velocity and inversely proportional to the acceleration due to gravity, g.   

g

vv
D
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=  

Figure 2.8
The decomposition of 
the initial velocity 
vector vo into its 
components, vox and voy



F) The Range Equation 
 When we solved the problem in the last section we found that the distance the ball 
travels was proportional to both v0x and v0y.  It’s always a good idea to check your results 
to see if they make sense.  .  
 
 If we increase v0x the ball moves further along the x direction in a given amount of 
time. If we increase v0y the ball will be in the air longer and will travel further for any 
given velocity in the x direction. This all makes sense, the catch is that for a given initial 
speed v0, both v0x and v0y depend on the angle at which the ball is kicked.  Therefore, an 
interesting question is: for what angle is this distance D a maximum?  How would we go 
about making this calculation?  The first step is to determine a general expression for the 
distance D in terms of the angle θ.   We can then examine this expression to determine 
the angle that maximizes D. 
 
 We’ll start with the expression for D that we obtained in the last section and write 
both v0x and v0y in terms of v0 and θ.   

g

v
D o θθ sincos2 2

=  

We see that D is proportional to the product of sinθ and cosθ.  We can simplify this 
expression a bit further by realizing the product of sinθ and cosθ is proportional the 
sin(2θ) to obtain the usual form of the range equation.    

g

v
D o θ2sin2

=  

Figure 2.9a shows a plot of the range D as a function of θ .  We see that D reaches its 
maximum value when θ = 45o.   Figure 2.9b shows trajectories for different values of θ. 

We see that the range for complementary angles is the same and that the maximum range 
is indeed obtained when θ = 45o. 
 
G) Superposition  

Figure 2.9a
A plot of the range D of a kicked soccer ball 
as a function of θ, thae angle the ball’s initial 
velocity vector makes with the horizontal. .

Figure 2.9b
Trajectories for different angles made by the 
ball’s initial velocity vector and the 
horizontal.. .



 We have already seen that the x and y equations of projectile motion are 
independent. In practical terms this means that the behavior of a projectile in the vertical 
direction is the same no-matter how fast it is moving in the x direction, and vice versa. A 
bullet shot horizontally out of a gun will take the same amount of time to hit the level 
ground as a bullet dropped from the same height.  
 
 Therefore we can consider the motion of the kicked ball to be the superposition of 
two simpler motions, the first being that of a ball moving vertically with constant 
acceleration, and the second being that of a ball moving horizontally with constant 
velocity.  We can actually see this superposition if we simply consider a single motion as 
viewed from two different reference frames.  For example,  
 
 If a man throws a ball vertically upward, we know the ball will go straight up and 
then straight down, all the time moving with constant acceleration of 9.8 m/s2 pointed 
downward.  Now suppose this man is sitting in a train while the train is moving with a 
constant speed past an observer at a station.  What will he see?  Well, if the train is really 
moving with constant speed, then the man on the train must see exactly what he saw 
before; the ball goes straight up and returns to his hand.  The speed of the train makes no 
difference, as long as it’s constant.  What does the observer at the stations see?  He can’t 
really see the same thing.  Figure 2.10 shows the trajectory of the ball as seen by the 
observer on the ground. He does not see the ball go simply straight up and down!   

Figure 2.10
The trajectory of a ball thrown straight up by a man at rest on a train 
.moving at constant velocity v with respect to an observer on the ground.  In 
the time ∆t it takes the ball to go stright up and down with respect to the 
man on the train, the train has travelled a distance  ∆x = v∆t.  The ball is 
always diretly above the man on the train and therefore appears to have the 
trajectory shown to the observer n the ground.



 
 He sees the train moving so that the horizontal positions of the ball when it leaves 
the man’s hand and when it returns are separated by the distance the train travels during 
the flight time of the ball.  In fact, what he sees is the combined motions of constant 
acceleration in the vertical direction and constant velocity in the horizontal direction.   
What he sees is exactly the trajectory a soccer ball would have if it were kicked with an 
initial velocity such that its vertical component were the initial velocity of the ball with 
respect to the man sitting on the train and its horizontal component were the velocity of 
the train with respect to the observer at the station.   
 
 The amazing conclusion we take away from this analysis is that projectile motion 
can be explained as simply free fall as viewed from a moving reference frame!   
 
 For example, in this case, we can predict what the man at the station will see by 
combining the information of what the man on the train sees with the known motion of 
the train.   In particular, we can write a vector equation that relates the velocity of the ball 
as measured by the observer at the station to the velocity of the ball as measured by the 
man on the train.   

groundwrttraintrainwrtballgroundwrtball vvv −−−−−− += ���

 

This vector equation relates observations in two different reference frames that are 
moving relative to each other, and will be the topic of our next unit. 
 



  
 
 
 

 


