
5.  Forces and Free-Body Diagrams 
 
A) Overview 
  We will begin by introducing the bulk of the new forces we will use in this 
course.  We will start with the weight of an object, the gravitational force near the surface 
of the Earth, and then move on to discuss the normal force, the force perpendicular to the 
surface that two objects in contact exert on each other, and the tension force, the force 
exerted by a taut string.  Finally, we will introduce Newton’s universal law of gravitation 
that describes the forces between any two objects that have mass.  We will close by 
introducing free body diagrams which we will then use in the solution of a Newton’s 
second law problem. 
 
B) Weight 
 In order to apply Newton’s Second law in physical situations, we will need to 
increase our inventory of forces.  We will start with the gravitational force near the 
surface of the Earth.  We have already seen that an object in free fall near the surface of 
the Earth has a constant acceleration whose direction is down and whose magnitude is 
equal to the constant g, which is equal to about 9.8 m/s2.  From this description of the 
motion, we can use Newton’s second law to conclude that there must be a force in the 
downward direction acting on the object and that the magnitude of this force must be 
equal to the product of the mass of the object and the constant g.   
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We call this force the weight of the object.  It is important to realize the weight of an 
object is NOT the same thing as its mass!  Mass is an intrinsic property of the object; its 
value determines how hard it is to change its velocity.   Mass does NOT depend on the 
location of that object or on its surroundings. Weight, on the other hand, just tells us the 
magnitude of the gravitational force that is acting on the object.   We will investigate the 
nature of this gravitational force more fully after we first introduce a few more 
straightforward forces.  
 
 
C) Support forces: The Normal Force and Tension 
 We can use our knowledge of the weight force from the last section to motivate 
the need for two more forces.  First, consider the incredibly mundane situation of a heavy 
box sitting on a floor as shown in Figure 4.1.  What forces are acting on this box?  Well, 
certainly the weight of the box is acting, supplying a force vertically downward.  This 
can’t be the only force on the box, though, since if it were, Newton’s Second law would 
tell us that the box should be accelerating downward with constant acceleration equal to 
g.   Therefore, to obtain the needed zero acceleration, there must be another force that 
acts vertically upward with the same magnitude.  Note that this force is NOT the 
Newton’s third law pair to the weight since both forces act on the same object, the box.  
This force is the force exerted by the floor on the box and is usually called the normal 
force, since its direction is perpendicular to the surface.   
 



What determines the magnitude of this force, in general?  Well, to determine the 
magnitude of the normal force in any particular case, we do just as we did here; we apply 
Newton’s law.  The normal force is simply what is has to be to do what it does!  What it 
does is to supply a supporting force for objects!   
 
 The total force exerted by any surface in contact with another surface will always 
have a normal component, but it may also have a component parallel to the surfaces 
called the frictional force.  We will discuss the nature of frictional forces in the next unit. 
 

 A force similar to the normal force between surfaces in contact with each other is 
the tension force in strings, wires 
and ropes.  Figure 5.2 shows a ball 
hanging from a string.  What forces 
are acting on the ball?  Clearly the 
weight force acts vertically 
downward.  In order to obtain the 
needed zero acceleration, the string 
must also be exerting a force on the 
ball. We call this force the tension 
force; it exists whenever the string 
is taut and its direction is along the 
string, in this case, vertically 
upward.   From Newton’s second 
law, we can determine that the 
magnitude of this force must be 
equal to the weight of the ball in 
order to provide the observed zero 
acceleration. Just as was the case 

Figure 5.1
Two forces act on a box that is at rest on the floor: 
the weight W, the gravitational force exerted by the 
Earth, and N, the normal force exerted by the floor

Figure 5.2
Two forces act on a ball that is suspended by a string: 
the weight W, the gravitational force exerted by the 
Earth, and T, the tension force exerted by the string.



for the normal force, the tension force is simply what is has to be to do what it does!   In 
this case, the sting is just holding up the ball; strings can also be used to pull objects 
across a surface.  In either case, the magnitude of the tension must be determined from 
Newton’s second law.  
 
D) Springs 
 Figure 5.3 shows a ball hanging from a spring.  We can use Newton’s second law 
to determine that the spring must 
be exerting a force on the ball 
that is equal to its weight.  
However, if we were to replace 
the first ball with a new ball that 
has twice the mass, we would 
see that the spring would be 
stretched more.  In this new 
situation, we know the spring 
would be exerting twice the 
force, but its length would be 
increased.  In fact, the amount 
by which the length changes tells 
us the magnitude of the force!  
The key concept here is that 
every spring has an equilibrium 
length, and if it is stretched or 
compressed by some amount ∆x 
from this length, it will exert a 
restoring force that opposes this 
change.  The magnitude of this 
force is proportional to ∆x, the 
extension or compression of the 
spring from its equilibrium 
position.   
 
The force law for springs that 
quantifies this relation is given 
by:   
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where the vector xo represents the equilibrium length of the spring, while the vector x 
represents the final length of the spring.  The vector difference x – xo represents the 
amount by which the spring is either stretched or compressed.  The minus sign in the 
equation illustrates that the force is always in the opposite direction of the vector x – xo, 
the extension or compression of the spring.  If the spring is stretched, x – xo points away 
from the equilibrium position; therefore the force is directed back towards the 
equilibrium position.   If the spring is compressed, x – xo once again points away from 
the equilibrium position; therefore, the force is again directed back towards the 
equilibrium position. Since the force exerted by the spring is always directed towards its 

Figure 5.3
Two forces act on a ball that is suspended by a spring: 
the weight W, the gravitational force exerted by the 
Earth, and Fspring, the force exerted by the spring. The 
magnitude of the spring force is proportional to the 
extension (or compression) fromits equilibrium position.



equilibrium position, we call this force a restoring force.  The directions of these vectors 
are illustrated in Figure 5.4.   

 
If we define the origin of our coordinate system to be at the equilibrium position, then our 
force equation simplifies to F = -kx. 
 
 The symbol k stands for the spring constant of the particular spring and is a 
measure of its stiffness.  The units of k are Newtons per meter; a large value of k means 
that a small deformation results in a big force. 
 
E) Universal Gravitation  
 We now want to generalize our discussion of the force we called the weight 
earlier.  You know that the moon orbits the Earth with a period of about a month and the 
Earth orbits the Sun with a period of a year.  To a good approximation these orbits are 
examples of uniform circular motion and therefore we know that each orbiting body 
experiences a centripetal acceleration.  Therefore, in Newton’s framework, there must be 
a real force being exerted on the orbiting body that is responsible for this acceleration.  
Newton proposed that this force was a universal gravitational force that exists between 
any two objects that have mass. . 
 
 In particular, he said that any two objects with mass exert attractive forces on 
each other whose magnitude is proportional to the product of the masses divided by the 

Figure 5.4
The spring force is a restoring force.  The force vector (F = –k(x – xo)) 
always points back towards the equilibrium position as illustrated in 
extension (top) or compression (bottom).



square of the distance between them and whose direction lies along a line connecting 
them. 
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In this expression, G represents the universal gravitational constant and 12r̂ represents the 
unit vector in the direction from m1 to m2.  Figure 5.5 illustrates the application of this 
expression to the Earth-moon 
system.    The symbols ME and 
Mm refer to the masses of the 
Earth and moon respectively, 
while REm is the Earth-moon 
distance.  We know the 
acceleration of the moon, am, is 
equal to the square of its speed 
divided by the Earth-moon 
distance.  Applying Newton’s 
second law, we can determine 
the acceleration of the moon.   
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All quantities in this expression 
were known to Newton except 
the universal gravitational 
constant and the mass of the 
Earth.   
 
 Newton, however, 
realized that the known 
acceleration due to gravity near 
the surface of the Earth, was also 
proportional to the product of 
these unknown quantities!  In 
order to make this realization, though, he essentially had to invent the calculus to show 
that the force the Earth exerts on any object is equivalent to that obtained by simply 
placing all of the mass of the Earth at its center.   
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Given this result, we see that the acceleration due to gravity near the surface of the Earth 
is equal to the product of universal gravitational constant and the mass of the Earth 
divided by the square of the radius of the Earth. 
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Figure 5.5
The universal gravitation force exerted by the Earth on the 
moon  provides the necessary centripetal acceleration to 
keep the moon in its orbit about the Earth. 



Therefore, we see that the ratio of the moon’s acceleration to that of an apple in free fall 
near the surface of the Earth is predicted to be equal to the ratio of squares of the radius 
of the Earth to the Earth-moon distance.   
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Now, the speed of the moon in its orbit is 1.02 km/s, while the Earth-moon distance is 
3.844X105 km and the radius of the Earth is 6371 km. When we plug in these numbers 
for the known quantities, we find that this prediction is verified!  This result is really 
amazing!  It represents the first demonstration that the same physical laws that operate 
here on Earth also operate in the Heavens! 
 
F) Free-Body Diagrams 
 In the last unit, we introduced Newton’s three laws which supply the framework 
we will use to develop our understanding of dynamics.  In particular, these laws will 
provide the basis for our understanding of the motion of any object in terms of the forces 
that act on it.  In order to use these laws successfully, though, we need to keep careful 
track of the magnitudes and the directions of all forces acting on the object in question; 
we will use free-body diagrams to accomplish this task.  

Figure 5.6 shows a man pushing a box across a smooth floor with a representation of all 
forces that are acting.   Contact forces are shown in red and the gravitational forces are 
shown in blue. Note that all of forces come in pairs, as required by Newton’s 3rd law.  For 
example, the force exerted by the box on the man is equal and opposite to the force 
exerted by the man on the box. 

Figure 5.6
All forces that act when a man pushes a box across a smooth floor.



 
 We would like to calculate the acceleration of the box. How do we go about 
making this calculation?  The key step here is to realize that the only forces which are 
relevant to this problem are the ones that act ON the box – all other forces can be 
ignored.  A diagram showing only these forces is called a free-body Diagram for the box 
and is illustrated in Figure 5.7.   

 Applying Newton’s second law to the box, we see that the acceleration of the box 
will be equal to the total force on the box divided by the mass of the box.  To determine 
the total force on the box, we will need to add, as vectors, all of the forces shown in this 
free body diagram for the box.  Usually, in order to add these vectors, we will want to 
decompose the forces into appropriate components and write Newton’s second law 
equations for each component separately. 
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G) Example: Accelerating Elevator 
 We’ll close this unit by considering a one-dimensional problem to illustrate the 
procedure to use when solving dynamics problems.   
 

Figure 5.7
The free-body diagram for the box shown in Fig 5.6.



Figure 5.8 shows a box of mass m hanging by a rope from the ceiling of an elevator 
moving vertically with acceleration a.  We want to calculate the tension in the rope for 
any value of this acceleration. 

 
 The first step is to draw a picture and label all the forces acting on the object in 
question. In this case the object is the box, and the forces acting on it are the tension in 
the rope (T), which points upward, and the weight of the box (mg), which points 
downward, as shown 
 
 The second step is to choose a co-ordinate system.  Any system will do, but you 
will soon discover that choosing one in which one of the axes is parallel to the 
acceleration will simplify the calculation.   
 
 The next step is to use your picture as a guide to write down the components of 
Newton's second law and solve for whatever variable you want to determine. In our case 
all of the forces act along a single direction so that we only have one equation to solve. 
The force on the box due to the rope is T in the +y direction and the force on the box due 
to gravity is mg in the –y direction; therefore the total force on the box in the +y direction  

Figure 5.8
A box of mass m hangs by a rope in an elevator that is moving vertically 
with acceleration a.  What is the tension in the rope?  To solve this 
problem, use the free-body diagram for the box that is shown.



is given by: 
mgTF ynet −=,  

Substituting this expression for the total force in Newton’s Second law yields the result 
that the tension is equal to the weight of the box plus the product of the mass of the box 
and its acceleration.   
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 The final step is to check to see if your answer makes sense. In this case we just 
found that the tension in the rope is given by the weight of the box plus an extra part 
which is proportional to the acceleration. If we consider the case where the elevator is not 
accelerating we see that the tension in the rope is just equal to the weight of the box. If 
the elevator is accelerating upward, the tension is bigger than the weight, and if the 
elevator is accelerating downward the tension is less than the weight. All of these 
observations make sense.  
 
 



 
 
 
 

 


