
8.  Conservative Forces and Potential Energy 
 
A) Overview 
  This unit introduces an important new concept: potential energy.  In particular, 
for any conservative force, we can define the change in potential energy of an object as 
minus the work done by this force.  In this course, we deal with two conservative forces, 
gravity and springs.  After defining the potential energy associated with each of these 
forces, we can rewrite the work-kinetic energy theorem so that it expresses a conservation 
law: the conservation of mechanical energy that applies whenever the only forces that do 
work in the situation are conservative forces. 
 
B) Conservative Forces 
 In the last unit we introduced the concept of work as a force acting over some 
distance, and we showed that work done on an object will change its kinetic energy. We 
evaluated the work done by two of the forces we have discussed so far, gravity and 
springs, and we have found that for these forces, the work done on an object by these 
forces depends only on the starting and ending points of the motion, and not on the path 
taken between these points.  
 
 In general, forces that 
have the property that the 
work done by them is 
independent of the path used 
to integrate between the two 
points are called conservative 
forces.  If the work done by a 
force between two points is 
independent of the path, then 
it must be true that the work 
done by such a force on a 
closed path, that is to say a 
path that ends up where it 
started, is zero.  To prove this 
claim, consider any two 
points x1 and x2 on the closed 
path as shown in Figure 8.1.   
 
 The work done from 
x1 to x2 along the top segment 
must be equal to the work 
done from x1 to x2 on the 
bottom segment, since the 
force is conservative.  
However, the work done from x1 to x2 on the bottom segment must be equal to minus the 
work done from x2 to x1 along the bottom segment, since we have just interchanged the 

Figure 8.1
The work done by a conservative force around any closed path 
is zero. For example, the work done from x1 to x2 along Path 1 is 
equal to minus the work done from x2 to x1 along Path 3.



endpoints. Now we can see that the work done around the closed loop is equal to the sum 
of the work done from x1 to x2 along the top segment and the work done from x2 to x1 
along the bottom segment.  This sum is zero! 
 
C) Potential Energy 
 In general, the work done by a force on an object between two points does depend 
on the path taken by the object between the two points.  For the special case of 
conservative forces, we have seen that the work does not depend on the path.  Therefore, 
we can define, for conservative forces, an associated potential energy that, for a given 
object, depends only on its location.  In particular, when a conservative force acts on an 
object as it moves between two points,  we define the define  the change in potential 
energy associated with that force as minus the work done by that force between those two 
points. 
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At this point, this definition of potential energy must seem quite arbitrary to you.  If we 
look at this definition in the context of the work-kinetic energy theorem, however, it will 
begin to make sense. 
 
 Recall the example from the last unit shown in Figure 8.2 in which we applied the 
work-kinetic energy theorem to determine that the speed that a ball, released from rest, 
attains while sliding down a frictionless surface only depends on the change in height of 
the ball and not on the details of the surface.  In particular, we found that the change in 

kinetic energy of the ball was equal to the work done by the gravitational force.  By our 
definition, the change in gravitational potential energy is equal to minus the work done 
by the gravitational force.   
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Consequently, we see that the change in potential energy is just equal to the product of 
the weight of the ball and the change in height between the two points.    Therefore, we 
see that the change in kinetic energy is just equal to minus the change in potential energy. 
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Figure 8.2
The speed of the ball at the botton of the frictionless surface depends only 
onh, the change in height of the ball.  



Whatever kinetic energy the ball gains is exactly equal to the potential energy that the 
ball loses.  If we define the total mechanical energy of an object as the sum of its kinetic 
and potential energy, then, in this case, we see that the total mechanical energy of the ball 
was conserved.  That is, at any point during the motion of the ball, the sum of its kinetic 
energy plus its gravitational potential energy is a constant. 
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D) Conservation of Mechanical Energy 
 In the lexample shown in Figure 8.2, we demonstrated that the total mechanical 
energy of the ball, the sum of its kinetic energy and potential energy, was constant 
throughout its motion.  We will now examine the work-kinetic energy theorem to 
determine exactly when mechanical energy is conserved.   
 
 The work-kinetic energy theorem was derived from Newton’s second law and 
states that the change in an object’s kinetic energy is equal to the work done by the net 
force on that object.  We can expand the work done by the net force as the sum of the 
work done by conservative forces and the work done by non-conservative forces.   
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In this course, the only conservative forces we encounter are the gravitational force and 
the spring force.  All other forces, for example, friction, tension, etc.., are non-
conservative forces.  If we now move the work done by conservative forces term to the 
left hand side of the equation and apply the definition of potential energy, we can see that 
the sum of the change in kinetic energy and the change in potential energy is equal to the 
work done by the non-conservative forces.    

NCmechanicalC WEUKWK =∆=∆+∆=−∆  

Now the sum of the change in kinetic energy and the change in potential energy is 
defined to be the change in the mechanical energy of the object.  Therefore, we see that 
whenever the work done by non-conservative forces is zero, the change in mechanical 
energy is zero.  That is, the mechanical energy is conserved whenever the work done by 
all the non-conservative forces is zero. 
 
 We will encounter many situations in this course in which the work done by the 
non-conservative forces is zero.  In these cases, we can apply the conservation of 
mechanical energy to answer easily many questions that might be difficult to answer 
using Newton’s laws directly.  Indeed, the conservation of mechanical energy gives us 
the relationship between the location of the object and its speed.   
 
 We willl now do a couple of examples that illustrate the power of this 
conservation of mechanical energy law. 
   
E) Gravitational Potential Energy  
 We’ve defined the change in potential energy as minus the work done by a 
conservative force between two points.  We can convert this change in potential energy to 
a potential energy function defined at any single point by simply choosing some specific 
point as the zero of potential energy.  For example, we can define the gravitational 



potential energy of a mass m near the surface of the Earth as simply mgh, where h is the 
height of the mass above a convenient, but arbitrary, point which we can choose to be the 
zero of potential energy as shown in Figure 8.3.   

 
The table below shows the form of the potential energy function for all conservative 
forces we will deal with in this course.  The arbitrary constant U0 appears in the general 
form for the potential energy function since it will always cancel when we calculate the 
physically significant change in potential energy. 

 
 We will now do an example using the potential energy associated with the 
universal gravitational force.  Suppose we release a ball from a spot far away from Earth 
and want to know how fast will it be moving when it finally gets here.  If the ball is 
released from rest its change in kinetic energy is proportional to the square of its final 
speed. 
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Figure 8.3
The gravitational potential energy U can be 
defined at any point by choosing a convenient 
height to have U = 0.  

U ≡ 0



Now the change in its potential energy can be found using the expression shown in the 
table.  Since the initial distance is far from the earth, we can approximate one over the 
initial distance as zero.  What is the final distance?  To determine this distance we need to 
recall that when we discussed the application of Newton’s universal gravitational force 
law between an object and the Earth, we said that we could consider all of the mass of the 
Earth to be located at its center.  Therefore, the final distance here must be equal to the 
radius of the Earth!   
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Applying the conservation of mechanical energy, we obtain the result that the final speed 
is proportional to the square root of the ratio of the mass of the Earth to its radius.  .  
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It is not too hard to see that we would have arrived at exactly the same answer if we had 
started by asking another very interesting question: What is the initial speed we need to 
launch something with from the surface of Earth so that it never returns? In other words, 
after being launched  from Earth, the object slows down and eventually stops when it is 
infinitely far away. This speed is called the Earth’s escape velocity, and when you plug in 
the numbers you find that it is about 11,200 m/s! 
 
F) Vertical Springs 
 We have already derived an expression for the change in potential energy of a 
spring.   
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If we choose x0 to be the equilibrium length of the spring, we obtain a simple parabola 
centered on the origin as shown in Figure 8.4.  
 
 Suppose we now hang a spring vertically. 
As long as we assume the spring is massless, it 
will have the same equilibrium length as before, 
and the equation for its change in potential 
energy will have exactly the same form as long 
as we choose y0 to be its equilibrium length.  
 
Now suppose we hang a box of mass m on the 
end of the spring. This will move the equilibrium 
position of the system downward to the point 
where the upward force of the spring balances 
the weight of the box as shown in Figure 8.5.  
The amazing thing is that the total change in 
potential energy of the system due to the spring 
and to gravity combined still has the same simple 
parabolic form as before as long as we make our measurements relative to the new 
equilibrium position ye. We will now prove this claim. 

Figure 8.4
Defining the potential energy of a spring 
to be equal to zero at its equilibrium 
position results in the potential energy 
function being a parabola.  



 
Call the displacement from the new equilibrium 
position y’.  We can now write down the expression 
for the change in potential energy of the spring as 
we move a distance y’ from equilibrium position. 
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We can simplify this expression to obtain two terms.  
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The first term is what we want.  We can rewrite the 
second term by replacing the kye factor (the 
magnitude of the force exerted by the spring) by the 
weight of the box.  Once we make this replacement, 
we see that the second term is actually equal to 
minus the change in potential energy due to gravity. 
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Therefore, if we move this second term to the left 
hand side of the equation, we obtain the expression 
that we want: 
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Namely,  the sum of the change in potential energy 
due to the spring and the change in the potential 
energy due to gravity, i.e., the change in the total 
potential energy of the system is just equal to the usual expression for the change in the 
potential energy of a spring if we choose the zero of potential energy to be the 
equilibrium position  when the box is attached! 
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The beautiful bottom line here is that the change in potential energy of masses hanging 
from vertical springs have the same simple formula as masses attached to horizontal 
springs, just as long as we measure the length of the spring relative to its equilibrium 
length in both cases. 
 
G) Non-Conservative Forces 
 We will close this unit with a brief discussion of non-conservative forces in the 
context of the work-kinetic energy theorem and potential energy. 
 

Figure 8.6 shows a box being pulled up a ramp through a displacement ∆x.  The 
forces acting are the weight, the tension, the normal force and the kinetic friction force. If 
we write down the work-kinetic energy theorem applied to the box as a single rigid object 
and expand the work done by the net force as the sum of the works done by the individual 
forces, we obtain:. 
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Figure 8.5
A mass M is hung from a spring 
stretching it a distance ye from its 
unstretched length.



The only conservative force acting is the weight.  We can bring its term to the left hand  
side of the equation and call it the change in potential energy.   
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The left hand side of the equation is now the change in the total mechanical energy of the 
box.  The right hand side of the equation is the sum of the work done by the non-
conservative forces.  It’s clear now that the work done by the non-conservative forces on 
an object is the thing that changes the total mechanical energy of an object.  No potential 
energy can be associated with a non-conservative force because the work it does depends 
not only on the endpoints of the movement but also on the exact path taken.   
 

In the next unit we will discuss in detail the calculation of the work done by non-
conservative forces, especially friction, that is responsible for the change in the 
mechanical energy of an object. 
 

Figure 8.6
The forces acting on a box being pulled through a 
displacement ∆x up a ramp are the tension T, the weight 
mg, the normal force N, and the kinetic friction force fk.



 

 
 
 
 

 


